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PART i - MODEL DEVELOPMENT

1.0 Statement of the Problem

Test mid launch operations with rocket propulsion engines are accom-

panied inevitably by the release of fuel vapors and combustion products into the

surrounding envirolmlent. Furthermore, although fuel transport, transfer, and

storage procedures em_ be designed in such a way that routine escape of liquids

or vapors will not occur, a risk of inadvertent release exists with each opera-

tion. Since under normal operating conditions rapid dilution takes place in the

atmosphere such operations do not constitute a serious pollution problem at

t31)ieal sites. Recently, however, fuels with relatively high toxicity levels have

been proposed for operational us_ and this has led to a requirement for esti-

mates of gas and vapor concentrations and exposure times both in the immedi-

ate vicinity of the operational site and at distances of up to several miles from

the site. Some of the meteorological aspects of the safety problem are examin-

ed in detail in this report for two NASA sites, the Marshall Space Flight Center

(MSFC) at Huntsville, Alabama, and the Kennedy Space Center (KSC) at Cape

Kennedy, Florida.

The initial production and subsequent growth of gaseous clouds from

rocket exhaust or conflagration sources and of vapor clouds from cold liquid

spills are complex phenomena involving many physical processes. Only by

simplification of the details of these processes is it possible to attempt to

model the behavior of the clouds.

Broadly speaking, the initial moments of cloud formation may be charac-

terized as a period of rapid transition from release conditions to quasi-

ambient conditions of pressure, temperature, and density. During this interval,

in launch and test releases, energy losses take place by radiative cooling, con-

duction, and frictional dissipation accompanying sonic and shock pressure

waves. In the case of a liquid fuel spill rapid vaporization with or without



partial combustionmay occur as the pressurized liquid adjusts to ambient

conditions of temperature andpressure. Becauseof intense mixing with

the atmosphere, at times of the order of tens of seconds to a few minutes

following release, the clouds tend to assumesymmetrical shapesthat can

be described roughly as a convex meniscus (cold spill over an area), a

curved teardrop plume (static test), an inverted teardrop (normal launch),

or a sphere or toroid with stem (fire onpad). The initial cloud from an abort

action in flight cannot be described in such a simple fashion. However, a

source of this nature, as well as the upper portions of a normal launch

exhaustplume, involving the vehicle trajectory, would be expectedto con-

tribute (to nearbyground-level concentrations) much less significantly than

the other source configurations.

For MSFCat Huntsville releases of toxic products in inadvertent cold

liquid spills andin static firing tests are of greatest concern. In the latter,

mechanical deflection andbuoyant ascent of the material produce an elevated

volume source that should lead to surface concentration patterns quite dif-

ferent from those to be expectedfrom the ground release represented by a

cold spill. For KSC at CapeKennedy,estimates of potential hazards due to

normal launchexhaust and conflagrations are required in addition to those

from cold liquid spills due to pipeline leakages.

i.i Preliminary Models

i.i.I Introduction

In an effort to derive quantitative estimates of surface concentrations,

a simple mathematical model of cloud formation and growth was formulated

and solved for selected initial and boundary conditions. The model represents

a preliminary attempt to identify and simulate the essential physical processes.

In view of the fragmentary nature of present theoretical understanding of, for

example, entrainment and eddy diffusion processes, this approach to the prob-

lem can be meaningful only if it is followed by experimental testing and model
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refinement as dictated both by the results of tests and by improved understand-

ing of the growth processes.

The transport and spread of the gas or vapor cloud was divided into two

phases. In the first phase it was assumed that the cloud growth and ascent were

controlled by gross entrainment of environmental air (heated source) or by

vaporization without ascent (cold source). The concentration distribution and

spatial dimensions of the cloud under quasi-ambient conditions of pressure and

temperature were then used as the initial conditions for the second phase in

which further cloud growth was assumed to be controlled by eddy diffusion with

and without deposition at the lower boundary.

1.1.2 Phase 1

1.1.2.1 Buoyant Rise of Heated Clouds

Although no exact theory exists for the ascent of a heated puff or plume in

the atmosphere, several semi-empirical equations for stabilization height have

been reported in the literature. In 1950 Machta [12] described a model in which

the initial excess cloud temperatures were reduced to ambient values by adia-

batic cooling and by entrainment mixing. Defining the maximum height H 1 as

the level of zero excess cloud temperature and assuming constant values of

ambient vertical potential temperature gradient O0/az and entrainment rate
-1

c = M OM/Oz, Machta found

c ae-Iaz (_e)0+ (1-1)

where (AO)0 is the difference in potentialtemperature between cloud and envir-

onment at height z = 0. By dividing the atmosphere into layers, allowances

can be made in the model for variable values of aE)/Oz and _. According to

Eq. (I-I) the maximum height H I is much more sensitive to the entrainment

rate than to the strength of the heat source. A value of 0.5 X 10 -5 -icm ,

based on observations of cumulus cloud growth was used by Machta for the

3



entrainment constant.

Sutton [20] assumed that the spread of heat in a rising volume was

analogous to the spread of matter in a diffusing puff carried horizontally by the

wind. Using mixing-length theory to describe the entrainment of ambient air

into the buoym_t volume and solving for the level H 2 of zero excess potential

temperature Sutton found

F___- _+_._%.1_/_p+_m/_
H2= _9o 0_a/2caapJ (1-2)

P

where c is the specific heat of air at constant pressure, p is air density, QH
P

is the strength of the heat source, C is Sutton's generalized diffusion coefficient,

m is a parameter (1 -< m -< 2) expressing the intensity of mixing, and a and p

are obtained from a power law O(0) + az p fitted to the ambient potential tem-

perature profile. For a constant vertical potential temperature gradient

(p = 1), and m = 7/4, the exponent of Q is approximately 0.276 showing again

the relative insensitivity of cloud height to the strength of the heat source.

Morton, Taylor, and Turner [13] assumed (a) that the rate of entrainment

at the cloud edge was proportional to a characteristic vertical velocity within

the rising cloud at the same height, (b) that horizontal profiles of mean vertical

velocity and mean buoyancy force were similar at all heights, and (c) that local

density variations were small compared to the ambient fluid density. These

assumptions, and application of the principles of conservation of energy, mass,

and momentum, led to the following solution for height of rise, H 3, in an atmos-

phere of uniform stability

H3- 4 ((_k) EgF (i + n 'X 1,
_TlPlCp T 1

(1-3)

I
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where g is the acceleration of gravity, T 1 and Pl are ambient values of air

temperature and density, respectively, at source level, F is the adiabatic lapse

rate of temperature, and n is the ratio of actual (uniform) lapse rate to F. The

constant k represents the ratio of mean vertical velocity to maximum vertical

velocity at any height and the product (c_k), when multiplied by the vertical

velocity at the center of the cloud at height z represents the entrainment rate

at that height. The value of the product (_k) was determined by Morton, et al

[13] to be 0.285 from the slope of a regression line relating the two sides of

Eq. (1-3) on the basis of X 1 -- 4.2 and laboratory measurements of all other

parameters. The behavior of the solution in this model, as in that of

Priestley and Ball [16], is such that the cloud overshoots the height at which

buoyancy forces first vanish, then oscillates about a level somewhat higher

than this. According to the solution curves the nondimensional parameter X 1

assumes the value 4.2 at the final stabilization height. With X 1 = 4.2 and

(_k) = 0.285, Eq. (1-3) reduces to

.__-_.0_ [_+ n,]-__ _-_,
Once again cloud height was found to be relatively insensitive to the strength

of the heat source.

For a maintained plume from a continuous source emitting heat at rate

QH' Morton, Taylor, and Turner found

H3 = 0.410-1/2 /gQtt /

/TlPlCp]

1/4

] -3/8gF (1 + n) x 1
T 1

(1-5)

where a is a proportionality constant that provides a measure of the rate of

entrainment (a = .093 from laboratory measurements) and where x 1 = 2.8 at

the level for which the vertical velocity first vanishes.



For a number of reasons noneof these models can be expectedto provide

precise values of H in the present problem. In the first place, assumption (c)

on page4, commonto all models, is violated in the early moments of cloud

formation bothbecauseof high temperatures and becauseof the presence of

local volumes of unmixed gas with densities appreciably different from that of

air even at ambient temperatures andpressures. For this reason, the initial

rise of hot gasesmay resemble more closely the rise of a bubble in water in

which turbulent entrainment is not a dominant process. Secondly,at heights

abovethat for which buoyancyforces first vanish, there are uncertainties

regarding the choice of final stabilization height, and it is unlikely that these

uncertainties can be resolved without a more detailed consideration of compen-

sating downwardmotions. Finally, all models involve, and are rather sensitive

to, an entrainment rate that must be determined empirically. Someuncertainty

exists as to the appropriateness of the few existing measurements of this quan-

tity in the present problem.

A more serious limitation of the models results from their restriction to

a calm atmosphere. A substantial reduction in stabilizationheight can be

e×)ected in the presence of a strong wind since mixing and entrainment will

occur along the horizontal component as well as the vertical component of the

cloud trajectory. Two equations, based entirely on observations of the heights

of rise of hot gases in the atmosphere in the presence of a mean wind speed U

have been derived by Thomas [21].1

I

I

I

I

I

I

I

I

I

I

I

I

I

1Observed cloud heights resulting from the combustion of small quantities

of fuel have been summarized by [6]in a paper received too late for consider-

ation in this study.
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In their original form, these equations are

1/3
(1-6)[_ 100 WInstmltaneous Source: H4 = 100 (AT + 1/4)

1/4
5000Q n

Continuous Source: H4 - _ (1-7)

where H 4 is the maximum height of rise (ft), U is the mean wind between the
-1

source and H4 (ft sec ), AT is the temperature difference (°F) between the

source and H4, W is source strength in pounds of explosive, and QH is source

strength in megawatts. Converting units, assuming for W in Eq. (1-6) a con-

version factor of 1.64 × 106 calories per pound corresponding to the heat of

combustion of TNT, these equations can be written

1/3

Instantaneous Source: H4 = .375 _-(AT _ 1/4) (1-8)

1/4
21Q H

Continuous Source: H 4 - _ (1-9)

-1
where H 4 is height in meters, U is mean wind speed in m sec , AT is tem-

perature difference (°F), and QH is source strength (cal. in Eq. [1.8] and cal.
-1

sec in Eq. [1.9]). Both equations must be solved by cut-and-try methods

since tt_e final height H 4 is involved implicitly in the evaluation of U and AT.

Furthermore, both equations are clearly invalid for small values of U.

For purposes of comparison, values of H 2 (Eq. 1-2), H 3 (Eq. 1-4), and

H 4 (Eq. 1-8) for the maximum height of rise of a cloud from an instantaneous

hot source were calculated for selected values of QH" The results are given in

Table 1.1.

The source strengths QH in Table 1.1 are typical of those of interest in

the present problem. A standard atmosphere vertical temperature gradient

of -6.5°C km -1 was used in each equation. Machta's formula (Eq. 1-1) was not



TABLE 1-1

MAXIMUM HEIGHT OF RISE H(m) FOR

SELECTED SOURCE STRENGTHS QH (cal.)

I
I

I

I
Sou rc e

strength

QH (cal.)

9
i0

i0 I0

ii
i0

12
10

Maximum Height of Rise H

H 2 (Eq. 1-2)

540

1000

1910

3550

H 3 (Eq. 1-4)
H 4 (Eq. 1-8) (m)

480

850

1500

2680

-1
U = 2m sec

210

380

690

1240

-1
U = 6 m sec

170

300

530

960

evaluated due to lack of information on entrainment rates appropriate to low-

I

I

I

I

I
yield fires and explosions. According to Table i.i the maximum heights given

by the Morton, Taylor, and Turner formula (Eq. 1-4) were systematically lower

than those derived from Sutton's model (Eq. 1-2). Mean wind speeds of 2 to 6

-1
m sec resulted in a further reduction in maximum height by a factor of 0.3

to 0.5 according to Thomas (Eq. 1-8). Since it is questionable whether or not

typical values of Sutton's generalized diffusion coefficient (C in Eq. 1-2) are

valid for clouds that move relative to the air [7, p. 82] only the formulae of

Morton, et al, and Thomas were used in this study.

1.1.2.2 Cloud Dimensions at Stabilization Height

It was assumed that gas concentrations and excess heat in the rising cloud

were distributed as a trivariate normal function in space. In such a distribu-

tion 99.3 percent of the total mass (and excess heat) is contained within a

sphere of radius 4 a where _ is the standard deviation along any radius. The

distribution function for concentration X is

8
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Q 2
m r

X - 3/2_ 3 exp- 2 (1-10)2 ¢ 2¢

where Q is the total mass of gas in the cloud and r is radial distance from
m

the (rising) center of the cloud. For lack of suitable alternative procedures,

Sutton's [20] mlalogy between the growth of a rising hot cloud and the growth of

a smoke puff carried horizontally in the wind was used to evaluate ¢. On this

basis

C 2 Z m

¢2 - 2 (i-ii)

where C is Sutton's generalized diffusion coefficient and m is a mixing

parameter. The use of Eq. (1-11) for this purpose is questionable since it is

not clear that the values of C and m established for growth of advected clouds

are valid for clouds that possess systematic motion relative to the air.
2

If the gas cloud has a finite volume characterized by variance ¢0 at

Z = 0, the concept of a virtual source can be introduced giving

C2(Z + Zo )m

¢2 = 2 (i-12)

where Z 0 is the distance from the virtual source (a = 0, Z = Z0) to the height

at which buoyant ascent is initiated (¢ = a0, Z = 0).

I
I
I

I

I

1.1.2.3 Cloud Ascent Due to Mechanical Deflection

The initial ascent of exhaust gases from static firing tests is controlled

to a large extent by the momentum of the exhaust and the deflector angle.

Motion pictures of actual tests carried out at MSFC were used to obtain rough

estimates of the altitudes to which the exhaust jet ascended before measurable

differences could be detected between the cloud trajectory angle and the

deflector angle for various release durations and rates. These altitudes were

then used as the starting point for computations of buoyant ascent.



1.1.2.4 Vaporization

For modelling purposes it was assumed that liquid fuel from spills and

leakages would be transformed instantaneously into a hemispheric vapor cloud

covering a small area of the earth's surface. The dimensions of the vapor

cloud were determined from a trivariate normal distribution allowing for a

transition from initial conditions of density, pressure, and temperature to

ambient conditions according to the Gas Law. For combinations of combustion

and vaporization the heat generated by combustion was distributed over the

entire volume of vapor and gas and buoyant ascent was computed as described

in Section 1.1.2.1.

1.1.3 Phase 2

1.1.3.1 Introduction

The trivariate normal distribution function in a form suitable for an

elevated instantaneous volume source was selected as the basic framework for

modelling the eddy diffusion of mass subsequent to stabilization of the initial

cloud. In this model the concentration × at time t and at a point x, y, z in a

Cartesian coordinate system is given by

Q
m

X (x,y,z,t) = _)3/2 X
(2 _x(X') _y(X') _z(X')

(1-13)

_)2"_1

xp- _ _,o.2(x.) 2(x_) "JL 6"_(x') J+ exp-2" o"2+
y z (x') "J

where Qm is the total mass of material released at the source; ax, ay, and az

are the standard deviations of the distribution along the three coordinate axes

at distance _ from the source; _, _ and _ are the coordinates of the (moving)

cloud center; x" = x 0 + _ where x 0 is the distance from the virtual source to

the true source located at the origin of the axis; and the coordinate system is

10
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chosen so that the x-axis is parallel to the wind direction at source height, the

y-axis is horizontal and normal to the x-axis, and the z-axis is vertical. Since

in all applications of the model the values of the standard deviations ax, Cry, and

a were specified from field measurements, Eq. (1-13) is entirely descriptive
z

with no specification of the physical mechanisms by which such a distribution

is achieved. The justification for its use rests primarily on the evidence pro-

vided by concentration profile measurements in the atmosphere near a point

source (filp.132). While the concentration patterns from individual tests with

instantaneous point sources often show marked departures from the Gaussian

form ensembles of such results, under apparently similar gross meteorological

conditions, show little evidence of systematic non-Gaussian form. Conversely,

in applying the model to real, quasi-instantaneous sources it must be kept in

mind that large deviations from the predicted concentration pattern are to be

expected in individual realizations, particularly at small times and distances.

In the initial model it was assumed that the altitude of the cloud center

was invariant in space and time and that the direction and speed of the wind

Thuswere constant in time and horizontal space.

_=H

7=0 (1-14)

Since _ --* 0 as t --- 0 the distribution of X at t = 0 has the form of two

trivariate normal distributions with variances _x (Xo)' (Xo) , and a 2z(Xo) and

with origins at x = 0, y = 0, z = + H. As t --_ m X -* 0; and as x --* _'

y -_ _, z --- _; )_ -* 0. The mass continuity condition expressed by

_ (1-15)fool I0 Xdxdydz = Q m

is also satisfied by Eq. (1-13).

11
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Introducing Eq. (1-14) into Eq. (1-13) and solving for ground-level con-

centration

X(x,y,z,t) =

2Q
m

(2 _)3/2 _x(x.)ay(X.)_z (x.)

exp

(x - Uht) 2 2 H 2 }1 _y__ +

(x') (x')"
x y z

(1-16)

Dosage values D were obtained by integration of Eq. (1-16) over time at
2 2 2

a fixed point. Assuming slow variations in _x' Cry, and a z

2Q
oo m

D(x,y,z) = f0 xdt _ 3/2 . exp

(2 ,) _x (x) _y (x_) _z (x_)

- - + 2 fO exp -
2 (x') _z (x 3

2

l{(X - Uht) }dt2
(x')

x

Qm 1 {_ + H 2 }2rrcr (x')cr z(x')U h exp - _ 2
y (x') z (x')

(i-i7)

where U h is the wind speed at height H.

1.1.3.2 Modification for Deposition

Eq. (1-16) was modified to allow for removal of mass at the earth's sur-

face by a method first described by Gregory [6]. The total amount of mass

Qm(X) remaining in the cloud at distance x from its initialposition was reduced

by the amount deposited over that distance. Hence Q in Eq. (1-16) was
m

replaced by
Ax n/2

exp - -- (i-18)
Qm (x) = Qm U 0
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where n is a parameter introduced by Sutton to describe the effects of stability

variations on the vertical wind profile, and where A is a constant representing

the mass removal rate or the mass fraction to peak concentration values in the

direction of cloud movement Eq. (1-16) reduces to

Xm(_,y, O,t) =

Axn/2 U: 1exp -2Q m

_)3/2 a x"
(2 x( )_y(X_%(x-)exp - _ (x') a2 (x')"

Z

1.1.3.3 Modification for Wind Shear

(1-19)

Because of the wide range of source heights and travel distances that

must be considered in the toxic fuel diffusion problem, the model was modified

to allow for systematic cloud deformation due to vertical wind shear. This

modification was accomplished by evaluating Eq. (1-19) at points along the

earth's surface determined by the mean wind speed and direction in the layer

below the source. In order to simplify the computations Eq. (1-19) was re-

written approximately in cylindrical polar coordinates as follows:

2Q m exp - Arn/2u0 -I

Xm(r', 60", 0, t) = 3/2 . . . exp

(2.) _r (x)a O (x)_z (x)

2 .J
2 .) _e(x)

(1-20)

where r" -- distance (m) from source to the ground-level position at which Xm

is evaluated and 60" is the angular distance (radians) between the cloud center-

line at z = 0 and the radial line at which X is evaluated. Note that aO(X" ) must

now be expressed in radians in the exponential term.

13
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With these modifications Eq. (1-17) for dosage takes the form

Q
m

D(r',50",0, t) = 27ra@(x,)az(X,)U H exp

I

(1-21)

Eq. (1-20) and (1-21) are valid only for cloud widths that are sufficiently narrow

so that no serious error is involved in replacing _y by a O.

Conversion from the polar coordinate system r, 60 at z = H to r',

60" at z = 0 was accomplished by the relations

U
r" - r (1-22)

U H

n()50" = _. a(p Az. + 60 (1-23)
i=l _z i l

where U is the mean wind speed between the surface and z = H, and the sum-

mation in Eq. (1-23) is carried out over layers of constant wind direction shear

(a_o/3z) between the surface and z = H.

1.1.3.4 Layered Source Model

The normal launch exhaust plume and the static test firing plume cannot

be realistically simulated by a single symmetrical source volume. In such

applications multiple source volumes were used and the dosages resulting from

the total cloud were obtained by linear superposition according to

m Q

D t(r',50", 0, t) = _ mj
j=l 2_aOj (xj') azj(Xj')UHj

exp-

2 zj aO2j (xj')

il-24)
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For the special case m = 1, H = 0, the average dose rate and the

dosages for specified time periods, can be evaluated approximately from the

total dosage values given by Eq. (1'24). If it is assumed that all material

passing the point ir', 50", 0) is contained between r"
r

r" = _ + 3 a . (x_), the total time for passage of this material is
r

6 o- .ix')
r

A'r -

U 0

= _ - 3a .(z') and

(1-25)

and the average dose rate D = D/AT.

The average dose rate D (T) for a specified time interval T is given by

the equation

D(T) = FD/T (I-26)

where F is the fraction of D contained between the abscissas r = + U0T of a

normal distribution function centered at r = 0 and with standard deviation

a . ix').
r
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1.2 Application of Models to Diffusion Problems at Marshall Space Flight

Center 7 Htmtsville_ Alabama.

1.2.1 Introduction

Specifications were provided for two potential source modes at the

Marshall Space Flight Center (MSFC), Huntsville, Alabama. The first of these

was the exhaust plume that results from static vehicle firing tests. Exhaust

gases at high temperatures, emitted downward as a jet from the vehicle, strike

cooled plates and are deflected outward and upward from the point of origin.

As the gases leave the deflector channel, momentum gained during the initial

release rapidly gives way to buoyant ascent resulting in a quasi-vertical plume

that may reach altitudes of several thousand feet. The ascent terminates as the

plume gases approach ambient densities by entrainment or eddy heat conduction

processes and radiative cooling.

The second source mode of concern was that due to inadvertant spill of

liquid fluorine on or near the firing test site. During the brief time interval

before the spill or leak can be stopped a certain fraction of all liquid released

to the atmosphere will be converted to fluorine vapor (F2) that will rapidly mix

with air to form the source cloud. The possible conversion of some liquid

fluorine to hydrogen fluoride (HF) accompanied by the release of heat was not

considered at this time.

A detailed description of the test site and the region surrounding it

including a topographic chart is presented in Part 2 of this report. Source

parameters, meteorological data, and the results of selected diffusion model

computations are given in Sections 1.22, 1.23, and 1.24. The shortcomings of

the model and suggestions for refinement are described at the end of Part 1

(Section 1.3).

1.2.2 Diffusion Model Source Specifications

1.2.2.1 Static Firing Tests

The cloud rise models described in Section 1.1.2 require numerical values

of the excess amount of heat contained within the cloud at the moment of release

16
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into the atmosphere, the ambient vertical temperature gradient, and the mean

wind speed. Quantitative information on mechanical deflection of the exhaust

jet is needed also for static firing tests.

Rough estimates of the shape, dimensions, and height of rise of the visible

plumes from static firing tests of various durations were taken from motion

pictures provided on loan by MSFC. The altitudes at which measurable depar-

tures of plume angle from the blast deflector angle occurred were determined

from these photographs for selected source strengths. Specifications of fuel

amount and exhaust temperature provided for four vehicles (A, B, C, and D)

by MSFC were used as initial conditions for static firing tests at MSFC. It

was assumed that the exhaust temperature (2500°F) was valid at the terminaz

tion of the jet phase of plume rise. The excess heat of hydrogen fluoride (HF)

at this point was computed from the heat content of the gas at 2500°F (8.31 X

103 cal. mole -1, Lewis and von Elbe [10]). First approximations to the height

of buoyant rise of the plume were obtained from Eq. (1-9) using a mean wind
-1

speed of 6.5 m sec To these were added the estimated plume heights at the

end of the jet phase.

TABLE 1-2(a)

STATIC FIRING TEST SOURCE PARAMETERS

I
I

I
I

Vehicle

A

B

C

D

Total

emission

Ibs (HF)

35,080

86,550

169,700

418,700

Excess

heat

megawatts

Buoyant
rise

(m)

Jet

_=ise

(m)

1,120

2,950

5,810

14,340

430

540

650

810

300

400

500

600

Stabilization

height

(m)

730

940

1150

1410

I
I

I
17



The horizontal dimension _ = a of the plume at stabilization height was

derived from Eq. (1-11) using C = 0.45, m = 1.75 and height values from Table

i-2(a). With this dimension and the height of stabilization as guidelines a

simple inverted teardrop shape was assumed. The lower part of the plume was

modeled as a paraboloid and the upper part as a hemisphere. The standard

deviations of horizontal bivariate normal distribution of mass at each of six

levels are shown schematically in Fig. 1-i. The heights of each level and the

corresponding values of lateral standard deviation _ for the four vehicles are
Y

listed in Table 1-2(b).

TABLE 1-2(b)

ASSUMED LATERAL STANDARD DEVIATIONS Cry AND
CORRESPONDING HEIGHTS FOR STATIC FIRING TEST

PLUMES FROM 4 VEHICLES

I

I

I

I

I

I

I
Vehic le A Vehicle B

Level Height
(m)

1 220

2 350

3 480

4 600

5 730

6 860

my )

0

64

90

110

130

0

Height

(m) (my )

260 0

430 86

600 120

770 150

940 170

1120 0

Vehicle C

Height

(m) (my )

280 0

500 110

720 150

930 190

1150 220

1360 0

Vehicle D

Height

(m) (my )

250 0

540 150

830 210

1120 250

1410 290

1700 0

It should be kept in mind that no measurements of either vertical or

horizontal concentration profiles in actual test plumes were available. Conse-

quently, the distributions in Table 1-2 are essentially hypothetical models con-

strained by rough estimates of heat source strengths and the visual aplJearance

of test plumes on film. Because of the horizontal component of motion of the

exhaust jet and the action of vertical wind shear, actual test plumes are not

18
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vertical. However, since the deviations from the vertical are small compared

with distmlces of interest in this problem these effects were neglected in the

preliminary source plume model.

1.2.2.2 Spill Sources

It was assumed that cold liquid spills due to pipeline leakage or other

sources would be transformed instantaneously into a vapor cloud at ground

level. No buoyant rise of the cloud was permitted. This assumption requires

a more thorough investigation because of the possibility of effective cloud rise

due either to heat generated by partial combustion of the liquid fluorine or to

the density deficit relative to the environment of the initial incompletely mixed

fluorine vapor.

A second assumption was invoked in modeling the spill release as a con-

tinuous point souree. For spill areas with dimensions of the order of tens of

meters on a side this assumption is reasonable for concentration or dosage

calculations at distances of 1 km or more. However, for very large spill areas,

or at short distances, the finite dimensions of the source should be taken into

acc ount.

Within the limits for which these assumptions are reasonable the com-

puted concentrations and dosages, expressed in terms of unit source strength,

can be converted by straightforward multiplication to any desired source

strength.

1.2.3 Meteorological Specifications

The gas or vapor clouds formed either by static firing or as a result of

spills are formed in short time periods of a few minutes or less and are then

carried by the wind as puffs or clusters. Ground-level concentrations and

dosages that result from the overhead passage of the cloud are critically

dependent on its dimensions at the time of passage. In the diffusion model

described in Section 1.1.3 the cloud dimensions as measured by the standard

deviations of a normal distribution must be specified as functions of distance

20
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from the source. For this purpose it would be desirable to have actual con-

centration measurements taken along horizontal and vertical axes in moving

puffs under a variety of stability conditions and for various distances from the

source in the Huntsville area. Such measurements were not available and it

was necessary to use experimental data from other sites to meet this require-

ment.

A comprehensive review of experimental measurements of cloud dimen-

sions from low-Ievel diffusion experiments with smoke puffs, gases, and fine

aerosols was carried out. Sources of data included Bosanquet [1], Bowne [2,3],

Cramer [4], Haugen and Fuquay [5], Hilst [8], H6gstr6m [9], Islitzer [10],

Fuquay, Simpson, Barad, and Taylor [5], Pasquill [14, 15], Scoggins [17], and

Stewart, et al. [19]. These data were classified grossly according to terrain

and atmospheric stability conditions. An example of measurement of the lateral

(arcwise) standard deviations of fluorescent particle (ZnS) clouds from 15

experiments under both stable and unstable conditions is shown in Fig. 1-2

taken from Fuquay, et al., [5]. In each test the particles were released con-

tinuously for 30 minutes into a basin area and samples were taken at a height

of 1.5 m along 4 arcs to a distance of 3.2 kin from the source. A second

example based on experiments in the National Reactor Testing Station area in

Idaho is shown in Fig. 1-3. In these tests uranine dye was released for 30 min.

periods from a 150 ft tower under unstable conditions. Samples were taken

near ground level along arcs to a distance of 1.8 km from the source.

Guidance for the selection of appropriate values of the standard deviation

of concentration along the vertical axis at various distances from the source

was obtained primarily from the tentative graphical summary given by

Pasquill [14, 15], Fig. 5-7, p. 209. As pointed out by the author, the values in

the graph are essentially speculative at extreme stabilities and at large dis-

tances. The graph was intended for use with short duration sources (emission

times of the order of a few minutes) in open country.
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Fig. 1.3. Lateral standard deviations (_y) of uranine dye in experiments at
the National Reactor Testing Station, Idaho from Islitzer [10].
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Lateral and vertical standard deviations of concentration were selected

for 3 classes of dilution rate labelled maximum dilution (temperature lapse

rate equal to or greater than dry adiabatic), average dilution (temperature

lapse rate less than adiabatic but greater than or equal to the standard atmos-

phere rate) and minimum dilution (temperature lapse rate less than standard

atmosphere but greater than isothermal). These values are tabulated at inter-

vals of i lcrn from the source in Table 1-3.

In all calculations described at this time, it was assumed that the stand-

ard deviation cr (x') Eq. (1-20) of concentration along a radial axis from the
r

source was equalto the lateral standard deviation at the same distance. No

attempts were made to include vertical variations in the standard deviations.

Typical wind profiles corresponding to each of the three dilution classes

defined above were obtained from a summary of late afternoon (local time)

rawinsonde data supplied by personnel at MSFC for the year 1963. Average

speeds and directions for each temperature gradient category are shown in

Fig. 1-4. It should be kept in mind that the diiution ciass labeis were based on

the magnitudes of the standard deviations in Table 1-3 and that these labels

are not necessarily consistent with the expected diluting effects of wind shear.

1.2.4 Results

1.2.4.1 Static Firing Tests

The diffusion model represented by Eq. (1-20) and the auxiliary equations

(1-22) and (1-23) was programmed for use on an IBM 1620 computer with pro-

visions for summing contributions from one to six source levels. The input

control data for static firing tests were obtained from Tables 1-2(a) and 1-2(b)

for the source and from Table 1-3 and Fig. 1-4 for meteorological conditions.

The summed ground-levei concentrations from all source layers were plotted

on plane polar projections and analyzed for the location and magnitude of the

cloud centerline at ground level. Centerline concentrations in units of parts of
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TABLE 1-3

VALUES OF LATERAL STANDARD DEVIATION (ay) AND VERTICAL

STANDARD DEVIATION (az) USED FOR COMPUTATIONS OF
CLOUD GROWTH BY DIFFUSION AT MSFC

Distance

(1,:m)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Maximurn

,%_(m)

190

340

480

620

745

860

980

1100

1220

1340

Dilution

az (m)

380

680

960

1240

1490

1720

1960

2200

2440

2680

Average

ay (m)

120

220

310

400

480

560

645

735

825

915

1460

1570

1690

1795

1900

2920

3140

3380

3590

1000

1080

1160

1230

3800 1305

Dilution

_z (m)

120

220

310

400

480

560

645

735

825

915

1000

1080

1160

1230

1305

Minimum

_y (m)

68

125

180

235

275

325

370

420

460

500

548

582

630

670

710

Dilution

(_z (m)

68

120.

170

220

26O

3O5

34O

38O

42O

455

498

523

567

592

637
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hydrogen fluoride (HF) per million parts of air by weight per gram of source

are sho_ as a function of distance from the source for each vehicle and for

each dilution class in Figs. 1-5 to 1-8. Note that distances in these figures are

from the true source position whereas the vertical and lateral standard devia-

tions needed as input in Eq. {1-20} were referred to distances x" from the vir-

tual source.

In each of Figs. 1-5 to 1-8 a smooth curve was drawn through the ground-

level concentration pattern centerline values obtained by analyses as described

above. Centerline concentrations were labelled as smoothed peak concentra-

tions since they represent the expectation of a series or ensemble of quasi-

instantaneous source tests. In any single test, particularly at short distances

from the source, the peak concentration experienced at an observation point

may differ greatly from the expected value. Further work is needed to provide

estimates of the magnitude of such fluctuations as a function of distance from

the source.

Although the concentrations in Figs. 1-5 to 1-8 are expressed in terms of

unit source strength, caution must be used in extrapolating the numerical values

to source strengths other than those specified by MSFC since a change in mass

source strength may be accompanied by changes in the momentum of the deflect-

ed exhaust jet and in the amount of buoyant rise of the initial cloud.

The principal features of Figs. 1-5 to 1-8 may be summarized as follows:

(a) In progressing from maximum cloud dilution conditions to minimum

dilution for all vehicle source strengths, the position of the maximum value of

smoothed peak centerline concentration moved away from the source and the

magnitude of the maximum decreased by one to two orders of magnitude. For

the largest vehicle, the maximum value occurred at distances in excess of

15 km under minimum dilution conditions.

(b) Under both maximum and average dilution conditions as the source

27



strength was increased progressively from vehicle A to vehicle D, the maximum

value of smoothedpeak centerline concentration diminished slightly indicating

that the effect of increased mass of HF wasmore than compensatedat ground

level by the increased source height. Under minimum dilution conditions, how-

ever, increases in source height from vehicles A to B resulted in smaller peak

concentrations at ground level but further increases in mass source strength

from vehicle B to C and D more thancompensatedfor the increased source

height effect.

In Fig. 1-9 isopleths of smoothedpeak concentrations at ground level have

beensuperimposedon a topographic chart of the MSFC andHuntsville area.

The assumedsource area is indicated by a solid circle in the lower left corner

of eachfigure. Concentration patterns are illustrated only for averagedilution

conditions asdefined in Section 1.2.3.

It appearsprobable that the major topographical feature in Fig. 1-9 will

result in large distortions of the idealized pattern shownby the contours. In

its present form the diffusion model contains no provision for the effects of

horizontal variations in the transporting wind field.

1.2.4.2 SpillSources

Total dosages at ground level downwind from a liquidspill source are

shown as functionsof distance from the source in Fig. i-i0(a) for minimum

dilutionconditions and in Fig. 1-10(b) for maximum dilutionconditions. Cor-

responding curves for non-zero values of A, the deposition coefficient,are in-

cluded for the figures. In all cases the dosages are expressed in units of parts

of fluorine gas (F2) per million parts of air by weight times time (secs) per

gram of F 2 released at the source. As noted previously a point source at

ground level was assumed for these calculations. Within the limits for which

this assumption is valid,the numerical values in Fig. i-i0 may be used with

any totalsource strength.
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Fig. 1.5. Smoothed peak centerline concentrations at ground level

as function of distance from a test firing of vehicle A.

(a) Minimum dilution conditions.
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All total dosage curves in Fig. 1-10 possess maximum values at the

source. Since these are dosages the magnitudes of the maxima are con-

siderably larger than the peak concentrations illustrated previously for

static firing tests. Near the source the centerline dosages were found to be

relatively insensitive to reasonable variations in cloud growth and deposition

rates. However, at greater distances from the source, the effects of

deposition as modeled in this study increase in importance. No informa-

tion is available on the magnitude of A that should be used for the gases of

interest in this study. The values of A used in these calculations are

typical of those listed by Pasquill [5], based on experiments with iodine--131

by Chamberlain and Chadwick.

Two examples of computed ground level total dosage patterns from LF

spill sources are shown in Fig. 1-11. These figures serve to illustrate the

effects of lateral cloud growth rates on the width of the dosage pattern.

1.3 Conclusions and Suggestions for Model Refinement

A preliminary mathematical model that attempts to describe the

transport m_d growth of a gas or vapor cloud released from a quasi-

instantaneous volume source in low-level shearing wind flow was form-

ulated and programmed for use on a digital computer. Computations of

smoothed peak concentrations and total dosages were performed for plane

polar grid points within a 90 degree sector at ground level from the source

to distances of about 15 kin. The computations were performed for

specified initial conditions believed to be representative of test firing

exhaust releases of hydrogen fluoride and pipeline spill releases of liquid

fluorine at Marshall Space Flight Center, Huntsville, Alabama. Estimates

of concentrations and dosages due to normal launch exhaust releases, pipe-

line spills, and conflagrations were derived for Cape Kennedy and are
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described in Volume 2 of this report.

The model has served to indicate roughly the magnitude and severity

of the potential environmental exposure problem consequent to the use of

certain toxic fuel additives. In addition it has been useful as a guide to

the desig_ of m_ experimental facility needed to support or negate the

theoretical exposure estimates. Recommended and alternative designs

for such a facility at MSFC are described in Part 2. At the same time

it must be recognized that both the procedures used for modelling the

various sources and the diffusion model have serious shortcomings and

inadequacies. In some instances it has been possible to show that

ground-level coneentrations are sensitive to specific model assumptions;

in others the sensitivity is unknown. For these reasons it is recom-

mended that both the source phase and the diffusion phase be re-exam-

ined in an effort to formulate more realistic initial and boundary con-

ditions and in an effort to provide a more faithful description of cloud

dilution in the atmosphere near the ground.

In modelling a heated source cloud the effects of radiative cooling,

formation of toroidal clouds, chimney or column convection effeets of a

sustained source, and entrainment of air accompanying the horizontal deflec-

tion of high momentum exhaust should be considered. Suitable photographs

should be used when possible for quantitative information on the heights and

dimensions of clouds. More information is needed on the total quantity of heat

reieased, the volume and the molecular weights of gases emitted at the source.

The behavior of unmixed or poorly mixed volumes of HF and F 2 under ambient

temperatures should be investigated.

A more comprehensive and detailed survey of previous experimental

studies is needed as a basis for improved estimates of at' ¢t9' and Cz for
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quasi-instantaneous sources. Selectiveuse of continuous source cloud measure-

ments made under conditions of minimum low frequency wind direction changes

should provide a firmer basis for modelling lateralcloud growth. Such

measurements should be taken in such a way that vertical shear effects are not

included. Experimental peak-to-average concentration ratios for various

sampling times are needed to provide more realisticexposure estimates. The

importance of these considerations cannot be overemphasized since both the

use of continuous source cloud variances and the use of smoothed concentration

distributioncurves tend to underestimate the exposures that will be experienced

at some ground-level locations.

Distortion of the gas cloud by systematic wind shear increases the area

to volume ratio of the cloud. Since eddy diffusiontakes place to a large extent

across the interface between clean and polluted air,this will result in enhanced

dilution rates that are not adequately accounted for in the model. A more

thorough study of cloud distortion is needed too for improved modelling of the

concentration distributioncurves at ground level in and normal to the

direction of the wind. The rough approximations used in this study are not valid

for large wind shears or at large distances from the source.

The effects of vertical variations in cr and non-uniform vertical
z

temperature gradients within the total exhaust cloud layer need investigation

since both may have important consequences in terms of surface concentrations.

Topographically induced influences on cloud growth rates and on time and

space variations in cloud transport are important considerations for specific

sites. Finally, the effects of chemical reactions, washout by precipitation, and

dry deposition on gas or vapor cloud diffusion patterns should be included in a

systematic review of the problem.
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2.0 EXPERIMENTAL PROGRAM FOR MSFC

2.1 Introduction

The following sections delineate an experimental program to either verify

or disprove the models used in calculations presented in Part 1 and Vol. IT of

the report and to provide observational estimates of the parameters required

for calculations by actual measurement of concentrations in the geographic area

of MSFC. Tracer techniques arerecommended which are designed to be

coupled to meteorological measurements to permit a description of the dilution

capacity of the atmosphere. The experimental program is designed to yield

models describing the diffusion process which may be used operationally with

observed and forecast meteorological conditions.

Previous sections of this report have attempted to define the relative

concentrations or dosages of toxic materials at points of interest to MSFC

personnel using a basic statistical model of the diffusion processes involved

and certain assumptions concerning the source configurations. Two sources

were considered in the model, and the same are considered for the experimental

program, i.e., a spill of toxic material without conflagration and the diffusion

of exhaust gases from static firing tests. For purposes of the design of the

program, it is assumed that spills of toxic material may take place at any time

of the day or night and that the most critical situation is one where the spill

occurs during stable atmospheric conditions associated with a nocturnal inver-

sion. This is also a period of pronounced local effects on low level wind flow.

While diffusion measuring field programs have been numerous, none have dealt

with the problem of stably stratified flow to the distances of interest here

except where the terrain involved was very uniform. The experimental pro-

gram is designed to provide reliable concentration estimates at locations both

on- and off-site under these conditions. Measurement of concentration result-

ing from surface releases under other stability conditions is appropriate with

the network designed for the stable case.
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Measurements of concentrations and resultant determinations of diffusion

parameters for static firing tests are complicated by the source configuration.

Exhaust gases are carried aloft by the buoyancy of the cloud as well as the

blast deflector. Measurement of surface concentrations off-site may becarried

out in the same way as the spill case, but the release of tracer material will

have to approximate the release of exhaust gases to provide valid results. It

is proposed that these tests be accomplished in conjunction with actual static

firing tests at MSFC with the introduction of a suitable tracer into the exhaust

from the rocket. Details of the tracer generation and sampling programs are

discussed in succeeding sections.

The design of a network of surface sampling positions has been

approached from the viewpoint that it should be both adequate to provide

reliable scientific measurements and reasonable from the standpoint of cost.

Appendix A provides a discussion of how the sampling network should be

designed to provide measurements of peak concentration within varying factors

of the true peak at 90% confidence levels. The results of this analysis are

included in the design configurations presented in the remainder of this section.

Three design configurations are presented; the first is required only to

answer the question of the validity of the model used in the first part of the

report; the second design goes a step farther, adding more sampling arcs

and additional meteorological equipment to permit evaluation of the coefficients

used in the model as well as the model; the final design adds more detail to the

total picture permitting definition of new models, if required, and sufficient

measurements to prepare forecasting techniques.

Succeeding sections will discuss site topography and geography, data

requirements, facilities required, recommended test programs with schedules,

data analysis and processing, and cost summaries of the three basic

designs.
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2.2 Site Description

Air flow, turbulence and atmospheric stability are all affected by the

terrain in the layer at the surface of the ground. These items are the deter-

mining factors in diffusion of material in the atmosphere, therefore the design

of an experimental program must take cognizance of the topography of the area.

Other factors make it necessary to consider rural versus urban environments

because of the effect on diffusion and, from the standpoint of logistics, roads,

power, communications and property ownership must be considered.

2.2.1 Topography

The 10 by 8 mile region to the north and east of MSFC is characterized

by a north-south ridge of hills rising 800 feet above the valley floor at a

distance of 8 miles east of the test site. A north-south row oF 300-ft hills 6

miles east of the test site provide a less complete barrier to air flow. In the

northern portion of the reservation, Weeden and Madkin Mountains appear

prominently 660 ft above the valley floor and only 3 to 4 miles from the

assumed source location at the static test stand. Other terrain in the area of

interest, i.e., Redstone Arsenal Reservation, Huntsville and suburban areas,

is relatively flat, some of it marshy and partially covered with growths of

trees to 40 ft.

2.2.2 Rural Versus Urban Environment

Huntsville, as an urban entity, occupies the north-central to northeast

portion of the area of concern, Urban residential areas have expanded to

areas adjacent to the boundary of the Military Reservation, e.g., West Hunts-

ville, Westlawn and Pea Ridge. It is anticipated that enhanced mixing will

occur in urban areas as opposed to rural areas because of increased rough-

ness and temperature differences; however channeling by the valley may off-

set this advantage. It is not the purpose of the experimental program discussed
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below to measure the effect of the urban complex per se but to determine if

concentrations are lower than would be anticipated by extrapolation from rural

areas.

2.2.3 Property and Facilities

The objectives of the experimental program require measurements that

are not on U.S. Government Property, particularly when concerned with con-

centrations that might be expected at Huntsville and surrounding urban resi-

dential areas. If the program is to provide sufficient measurements to be use-

ful, it must be done with the consent and cooperation of the local government

and populace.

Selection of sampling locations, while conforming to the network design

in the nex_ section, should be made with regard to public rights-of-way so far

as possible and placed on private property only when absolutely necessary. The

latter requirement is only one of cost consideration because of the time

required for individual negotiations for permission to enter the property.

Sampling positions have been suggested in the next section with regard for

these considerations.

Sampling on the government controlled property is assumed to be with

permission of the government. Effort will be made to avoid restricted areas

in the planning stages unless they are areas of special interest so far as con-

centrations of contaminant are concerned.

In summary, the area of interest for this experimental program is

assumed to be in the northeast quadrant centered on the static test stand in

Test Area 9 extending to the hills on the east, and Huntsville in the northeast

and north.

Depending on the source and complexity of the program, there may also

be interest in concentrations up to five or ten thousand feet above the ground

over this area. These items are covered more specifically in the next section

on data requirements.
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2.3 Data Requirements

Three test configurations are discussed as outlined in the introduction to

the test program. Objectives of each configuration and data requirements to

meet these objectives are presented below. The number of tests indicated are

based on consideration of logistics and the climatological wind rose for Madison

County Airport. Some refinement may be necessary to account for cases lost

due to precipitation, fog and transient features that are not accounted for by

long term climatological averages.

Surface sampler spacing is based on the analysis presented in Appendix

A. The analysis was addressed to three design problems:

(1) To derive approximate representations of the error distributions of

sample estimates of concentration parameters, as a function of separation

between observations.

(2) To determine the maximum angular spacing that will assure, with

90% confidence, that the ratio of an actual to an estimated concentration para-

meter will not exceed a stated upper tolerance limit.

(3) To determine the greatest time interval between measurements that

will assure, with 90% confidence, that the ratio of actual instantaneous peak

concentration to estimated instantaneous peak concentration shall not exceed a

stated upper tolerance limit.

Attention was centered on statistics related to three parameters:

(1) Integrated concentration: Ratio of estimated integral to actual

integral because integrated concentration is the usual measurement obtained

in sampling programs.

(2) Variance of concentration: Ratio of estimated variance to actual

variance because these parameters are controlling in the statistical diffusion

model being evaluated.

(3) Peak concentration: Ratio of actual peak concentration to estimated
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peak concentration because of the importance in setting standards of exposure

based on peak-to mean ratios and short=period peak exposures.

Specifications for angular spacing and time spacing between observations

at a given downwind position have been determined to assure that the ratio of

the actual peak concentration to the estimated (from observations) peak con-

,centrations is less than or equal to two with 90% confidence. Angular spacing

requirements were based on values of ay (lateral standard deviation of concen-

tration distribution) considered appropriate for a surface release in moderately

stable conditions. Time spacing requirements were determined by assuming

the localized distribution of concentration in the X direction is the same as

that in the y direction over relatively small distances and that the cloud moves

uniformly with speed u. Thus if distance X = _t, specifications are determined

for a sufficiently accurate network as outlined in Table 2.1. Complete speci-

fications may be found in Appendix A.

Table 2.1

Specifications for Angular Space and Time Spacing to Assure

Peak Concentrations Are Estimated Within a Factor of 2 With

90% Confidence. (u assumed 3 m/sec.)

I
I

I

X (km) ay (Meters) Angle (Degrees) Time (Min.)

1

5

10

15

68

275

500

710

7.8

6.3

5.7

5.4

0.76

3.06

5.56

7.96

I

i
I

I

Note that the spacing values given in Table 2.1 are twice the standard

deviation assumed for the crosswind concentration. One further assumption

regarding measurements of dosage was that measured

values did not differ by more than 15% from true values.
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With thepreceding background, three test designs are presented which

will accomplish three increasingly comprehensive objectives.

2.3.1 Test Program A

Objective--To verify predictions of peak concentrations and total dosage

made with the model in part 1 of this report.

The tracer sampling network will consist of four arcs, referring to Fig.

2.1; these are recommended to be at 1 and 3 km over 120 degrees from the

source and the arc starting east of Gate 3 at Mathis Mountain, extending just

south of Madison County Airport and ending against Weeden Mountain and the

arc through downtown Huntsville just north of Route 431 and 72. Spacing will

be in accordance with Table 2.1. Surface samplers are recommended to be

rotorods with three sequential samplers on each arc to give the time resolution

needed to determine peak concentrations. The network is designed to accomo-

date both simulated spill and static firing sources.

Meteorological measurements are assumed to be those already avail-

able at Huntsville including rawinsonde observations taken in conjunction with

the test, with the addition of two anemometers to aid in wind flow determinations

located,( see Fig. 2.]_, on Martin Road near the reservation boundary and two

miles northwest of the Madison County Airport. In this design configuration

these are assumed to be surface units on a hinge-guyed tower at a height of

70 feet to obtain information above the tree and urban housing levels. Strip

chart recording is recommended, and it is assumed the equipment will be

operated continuously so as to obtain a climatology of wind flow.

Number of tests shall be as many as possible with wind conditions that

are specified, i.e., flow toward Huntsville. Two operating periods of four

months each are recommended throughout the test plan. In this configuration

it is recommended that at least 20 spill tests and 5 static firing tests be

obtained in each four-month operational period. Spill tests will be scheduled
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Fig. 2.1 Meteorological and tracer sampling position for Plan A.
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to cover all atmospheric stability situations and times of day of interest to the

sponsor.

In summary the following data requirements are to be met.

(1) 40 spill tests under various conditions.

(2) 10 static firing tests under usual static firing meteorological condi-

tions.

(3) All meteorological observations regularly available at MSFC plus

extra rawinsonde observations and two additional surface wind anemometer

Iocations

(4) Four surface tracer sampling arcs containing a total of 12 sequential

tape samplers and 76 rotorod sampling positions distributed with 15 on arc I,

20 on arc 2, 23 on arc 3 and 18 on arc 4.

2 3.2 Test Program B

Objective--To verify predictions of peak concentrations and total dosage

made with the model in part 1 and to verify the horizontal diffusion coefficients

and infer the validity of the estimated yertical diffusion coefficients.

The tracer sampling network includes all locations listed under Plan A

and two arcs are added, see Fig. 2.2, from Madkin Mountain southeast to

Redstone Road and the arc circling north of the airport in the outskirts of

Huntsville. It is further recommended that sampler spacing be doubled on the

three outer arcs and increased by 50% on the three inner arcs to permit testing

in more stable atmospheric conditions with a greater chance of success. Once

again the network is designed to accommodate both spill and static sources.

Surface wind and temperature measurements, including air flow and

turbulence, are required in conjunction with the tracer measurements if an

understanding of the relation between these variables and diffusion is to be

attained. The terrain around MSFC is a major factor affecting local low level
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Fig. 2.2

Surface _ sta_ons

Meteorological and tracer sampling position for Plan B.
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flow and the design of a surface observing network (both tracer and wind) must

account for it if a realistic prediction program is to be developed. It is recom-

mended that wind speed and direction be measured at ten well-located sites

around the valley to define the near-surface wind flow pattern and, indirectly,

the trajectory of a low-level airborne aerosol cloud. Three temperature

measuring sites are suggested, at the source, on Martin Road at the site

boundary and in an urban location in Huntsville.

In addition to the flow measurements, it is proposed that a 300 ft tower

be erected near the source with tri-axis measuring anemometers at three

levels to provide turbulence information. The measurements should be made

at 75, 150 and 300 ft; temperature measurements would also be desirable at

these positions. Turbulence measurements from the source would be expected

to be closely related to diffusion taking place in the first few kilometers of

travel for spill sources, thus it should provide an eventual predictive method

for on-site concentrations resulting from spills.

It is also assumed that existing MSFC facilities, particularly the rawin-

sonde will be used to bolster the observing network described above.

Number of tests are expected to be 14 spill and 5 static firing tests dur-

ing each four month operational period covering various meteorological condi-

tions as outlined under Plan A. The total number of spill tests is reduced

because of the increased data obtained under this plan.

In summary, the following data requirements are to be met.

{1) 28 spill tests under various conditions.

(2) 10 static firing tests under usual static firing conditions.

(3) AH meteorological observations regularly available at MSFC with

additional rawinsonde flights for tests.

(4) Data from 10 stations measuring surface air flow and three tempera-

ture measuring locations.

64



!

I

I

!

!

I

!

!

II

!

!

II

!

i

!

(5) Turbulence data from 3 levels on a 300 ft tower near the source.

(6) Six surface tracer sampling arcs containing a total of 18 sequential

tape samplers and 181 rotorod sampling positions distributed with 22 on arc 1,

30 on arc 2, 33 on arc 3, 46 on arc 4, 30 on arc 5 and 20 on arc 6.

2.3.3 Test Program C

Objective--To verify predictions of peak concentrations and total dosage

made with the model in part 1, verify horizontal and vertical diffusion coeffi-

cients and develop comprehensive diffusion prediction techniques.

The surface tracer sampling network is expanded to seven arcs follow-

ing a trajectory towards Huntsville with additional samplers on the west side

of Weeden and Madkin Mountains to pick up split clouds if these occur, (see

Fig. 2-3). Density of samplers is doubled at all arcs over the recommended

spacing in Table 2 of Appendix A. This is done to permit more stable atmos-

pheric conditions to be measured and to improve knowledge of the crosswind

distributions on each arc. Three sequential tape samplers are required on

each arc to provide time histories of concentrations in the downwind travel of

the cloud.

Vertical sampling by two methods is proposed for this configuration.

Tethered balloons, to be used as a support for vertical sampling arrays, are

proposed for ground source experiments within 3000 meters of the release

point. Aportabletowerwithinl00 meters of the source is also proposed as an

aid to source configuration definition for spill cases. Aircraft sampling is the

only reasonable method to perform vertical sampling at moderately large

distances for ground sources and all distances for static firing tests. Two

aircraft equipped with special sampling equipment are suggested, or de.finition

will be insufficient to make sampling worthwhile. Sampling is proposed at

positions over Huntsville and halfway from the source to Huntsville with extra
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75 ft., 150ft., 300ft., W/S, W/D, Turbulence

• 75ft., W/S, W/D

• Rawinsonde or Double-Theodolite Pibal

• Aerosol Source
r_ Air Temperature at W/S Heights

Fig. 2.3 Meteorological and tracer sampling positions for Plan C.
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vertical samples taken close to the source for static tests to provide source

definition.

Wind and temperature sampling positions are also indicated in Fig. 2.3.

A network of 22 surface wind stations are proposed to measure flow in the

valley, five of these have temperature measuring equipment. Two towers of

300 ft each with three levels of turbulence sensing tri-axis anemometers are

proposed, one near the source as in Plan B and a second on Martin Road near

the site boundary to measure turbulence in the flow toward Huntsville.

Use of the MSFC rawinsonde is assumed for this plan also with two con-

tractor operated double theodolite pilot balloon observing sites added as indi-

cated on Fig. 2.3 to provide information on free air flow in the valley.

Number of tests are recommended to be 12 spill tests and 5 static firing

tests during each four month operational period. The number is reduced from

Plan A and B because the increased complexity of the operational network will

provide enough additional information to reduce the required number of tests.

In summary, the following data requirements are to be met.

(1) 24 spill tests under various meteorological conditions.

(2) 10 static firing tests under usual static firing conditions.

(3) All meteorological observations regularly available at MSFC with

additional rawinsonde flights for tests.

(4) Data from 22 stations measuring surface air flow and five tempera-

ture measuring locations.

(5) Turbulence data from 3 levels on each of two 300 ft towers, one near

the source, one in the valley.

(6) Double theodolite pilot balloon observations at two locations.

(7) Seven surface sampling arcs containing a total of 260 rotorod samp-

ling positions as indicated in Fig. 2.3 and 21 sequential tape sampler positions.

(8) Vertical samples at 5 ft intervals from a portable tower near the
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source andat 50 ft intervals up to 450 ft on each of four tethered balloons at

about 3000meters from the source.

(9) Vertical concentration samples gathered by two specially equipped

aircraft to provide vertical definition abovethe balloon sampling heights and

at greater distances.

2.4 Experimental Equipment and Facilities

The following sections discuss equipment, supplies and facilities

required to conduct tests outlined in Section 2.3. Items are discussed on an

individual basis where possible and as part of a system where a system is

necessary. Costs are presented for some individual items for comparative

purposes, but costs for each Design Plan are contained in Section 2.7.

2.4.1 Tracer Selection

A tracer technique was sought which would permit similar tracer mater-

ials and, in the interest of economy, the same collection devices to be used for

the investigation of both spill and test firing situations. A tracer was also

wanted which was non-toxic and non-objectionable in other ways, at least in

the quantities in which it will be discharged to the atmosphere.

In order to be used in static test-firing, the tracer material must be

stable at temperatures of approximately 5000°F if it is to be incorporated in

the fuel or injected directly into the exhaust flame at the point of origin. This

immediately rules out fluorescent pigment, organic dyes, and most non-toxic

gases, although sulfur hexafluoride (SF6), which can be detected by "electron

capture" analytical techniques in concentrations as low as one part per billion

(1 ppb), could possibly be used at temperatures up to 4000°F.

In order to use the same collection apparatus and analysis techniclues,

the tracers used for the spill and firing cases should both be particulates,

or both be gases.

A summary of possible tracers is shown in the following table.
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Tracer

Fluorescent Pigments

(Zinc sulphide, or

zinc cadmium sulphide)

.Organic Dyes

(Fluorescein)

SF 6 (Gas)

Rare Earth Metals

(Dysprosium, europium,

indium, iridium, gold)

Stable

at High

Temperature Toxic

No No

No Slight

Up to 4000°F No

Yes No

Remarks

Individual particles (3-

4) easily and economi-

cally collected by roto-

rod samplers or filtra-

tion. Analytical tech-

nique well proven in
field use.

Analysis more expen-
sive than fluorescent

pigment.

Detectable in concentra-

tions of 1 ppb by "elec-

tron capture" analysis,

but results not always

reproducible.

Detectable in amounts
as low as 5 x 10 -12

grams by neutron acti-

vation analysis, but

analysis is expensive.

After reviewing the possible candidates, and considering the economics

of the situation, it is recommended that particulates be used as tracers--

fluorescent pigment for the spill case and rare earth metals for the static

firing situation. Initial planning is based on rotorod samplers being used as

collectors for both the fluorescent pigment (FP) and the rare earth metals.

Some development work will be required in connection with the neutron

activation analysis. Background interference, both from airborne dust particles

which may be present at the test site, and from the grease used to coat the

rotorod samplers must be determined. Estimated cost to make these deter-
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minations, which will also yield information as to the sensitivity of the analy-

sis andquantity of tracer required, is $200.00for each of five (5) possible

tracers. Costs for consultations are included in Section 2.7 to consider

methods of tracer selection and dispensing. For example, if fluorescent pig-

ments could be introduced into the jet plume at a distance where the tempera-

ture has droppedto satisfactory levels, this tracer may be more feasible.

Estimated sensitivity (barring backgroundactivity) of the candidates are:

Element Instrumental Sensitivity

(_ g)

Au 0.0005

Dy 0.000005

Eu 0.0005

In 0.0001

Ir 0.001

Additional development work will be required to design a mechanism

for injecting the material into the rocket flame at its source if the tracer

cannot be mixed with the fuel.

While it is anticipated that rotorods will be satisfactory for collection

of samples of rare earths, feasibility tests at the start of the program may

indicate the need for a filter type sampler. It is understood that the U.S.

Air Force is currently using neutron activation analysis on tracer materials

collected by airborne filtering devices. A "need to know" should be estab-

lished to take advantage of their experience in this field and avoid duplication

of effort.

2.4.2 Aerosol Generation

Fluorescent particles are considered the best tracer available for spill
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tests because of the sensitivity of the method and the availability of a rela-

tively inexpensive and portable sampling system. Generators or dispensers

of fluorescent particles are inherently more expensive than generators of other

aerosols such as gases, but this expense is more than outweighed by savings in

cost of sampling equipment and analysis in the FP technique.

Particulate aerosols may be generated by a dry powder dispenser such

as the Metronics Model 5 and associated control equipment. These may also

be generated by dispensing a particulate slurry in a fine fog. The Todd Insect-

icide Fog Applicator has been used extensively for this purpose. Costs in the

summary have been based on a dry dispenser using prepared and calibrated

fluorescent powder.

Generation of particles for sampling of static firing tests is a much more

difficult problem. If rare earths are used, they could be introduced by adding

them to the fuel or introducing them into the plume at the blast deflector. If

fluorescent particles are used they would have to be added at a point where the

plume temperature drops to 1000°F. One suggested method is fogging with a

fire hose nozzle while another is dumping dry particles from an aircraft or

helicopter. Both methods present some major engineering difficulties. Simu-

lation of static firing sources is not judged satisfactory because the buoyancy

of the plume is very important to subsequent surface concentrations of mater-

ial in the distances of interest.

2.4.3 Tracer Sampling--Surface

It is recommended that rotorod samplers be used to sample the fluores-

cent particles. Pricing is based on the purchase of the basic rotorod sampler

and providing each with a small control and battery box. The controls required

are simply on-off and a timed switch to reverse the rotation of the rotorod.

The box would have a variety of mounting techniques to suit all installations.
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At three points on each sampling line the program calls for incremental

samples to define the shape of the aerosol cloud at the surface. Allowance has

been made for 24 sequential samplers of the continuous tape type (Gelman

Instrument Company) and for provision of suitable power at remote sites.

To determine the characteristics of the aerosol cloud very close to its

source, a small, portable, tower is needed to mount rotorod samplers to a

height of 50-70 feet. The tower would only have to stand during winds accept-

able for an experiment. Such a tower can be fabricated from standard lines of

self-supporting towers, a large but light-weight base, with small wheels

attached to the base in such a way that the tower can be rolled into position

when horizontal and then upended and sandbagged for use once the samplers

have been placed. The cost of a tower system built to these specifications is

$300.

To sample any aerosol cloud that passes through the 300-ft downwind

tower, rotorod samplers can be placed on a light pulley assembly to run up

the face of the tower or up a guy line. An allowance for fittings has been

made.

Rotorods have been used successfully for balloon sampling procedures

and are recommended for such installation. A different battery box is required

to reduce weight, but costs are the same.

It is assumed that if rare earth tracers are used that rotorod collection

will be satisfactory; if this is not the case filter type sampling equipment will

be required at significant increases in cost of the sampling program.

2.4.4 Tracer Sampling--Aircraft

A major purpose in carrying out static test aerosol diffusion studies

is to determine the history of an aerosol cloud aloft after its violent genera-

tion. To do this the cloud must be sampled adequately to determine its distri-

bution in space at several different times. The only approach thought feasible
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is through sampling from an aircraft. On investigating the current known

position in this field of measurement, it became apparent that the continuous

and rapid sampling of aerosol from an aircraft is a difficult and exacting task.

The instrumentation/aircraft must be a tried and proven package and

the crew must be experienced in this type of work. These requirements become

even more pronounced when one considers the critical aspect of the contribu-

tion of success in sampling to the success of the larger entity of a rarely avail-

able experiment.

The use of two L-19 GFE aircraft is proposed with the contractor pro-

viding a highly qualified pilot-technician to supervise the operation and to

operate one aircraft. The second aircraft would be operated by a specifically

selected and trained locally based commercial pilot or a GFE pilot. Samples

of non-fluorescent particulates could be taken with a drum-type impaction

sampler or of fluorescent particulates with a Hanford style real-time concen-

tration recorder backed up by a drum-type sampler for integrated samples.

The Hanford concentration recorder could be used directly for this require-

ment, but better results may be easier to obtain if the instrument were devel-

oped further. Thus the cost of aerial sampling will vary with the characteris-

tics of instrumentation and aerosol as well as with the basic scientific require-

ments. An alternate approach is to contract for the sampling service with an

organization equipped with suitable aircraft and personnel. An estimate of

$55,000 for this function is based on properly instrumented aircraft of the

Apache class, with the subcontractor maintaining one aircraft and pilot-tech-

nician-supervisor on site during active experimental periods. A second air-

craft and operator would be on-call locally to fly a second sampling system

under the direction of the pilot-technician.

Other approaches, generally involving the use of chartered aircraft

during each individual experiment, promise many difficulties in program
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schedulingand flexibility, and in questions of measurement validity.

2.4.5 Balloon System

The balloon system is designed to measure the initial vertical distribu-

tion of the particulates in the formative stages of the plume. Samples should

be taken at 50 ft intervals from the surface to 450 ft some 3 km downstream

from the simulated spill source. At least two such vertical profiles are

required to permit statistical significance, and the vertical profiles should be

measured within 2 standard deviations of crosswind concentration or approx-

imately 1000 ft in the crosswind direction. Therefore, to adequately cover

wind flows from the southwest quadrant, some 15 vertical sampling sites are

possible over the arc of radius 3km from the source.

The only practical method for obtaining the vertical samples is to

employ a flexible and completely self-contained balloon system. Blimp shaped

tethered balloons have been employed for obtaining similar measurements in

the past and should be readily adaptable to the unique needs of the Huntsville

experiments. TRC suggests a 2000 cubic ft balloon, approximately 37 ft long

and 11.5 ft in diameter. The balloon should be constructed from a heavy

balloon fabric, such as neoprene coated nylon, to permit re-use for up to 15

flights. Such a balloon, when filled with helium, would provide the capability

of carrying a 45 pound pay-load to 450 ft which is adequate to meet the exper-

imental requirements.

The prime pay-load would consist of 9 rotorod samplers. In addition,

upper and lower balloon strobe lights and two tetherline warning lights will be

required to meet the Federal Aviation Agency requirements for night opera-

tions. To save approximately 10 pounds in the pay-load, it is suggested that

the power for operating the lights be provided by a power cable from the

ground rather than by airborne battery units. The lights, rotobar samplers,
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tetherline and power cable for a balloon at a 450 ft altitude will weigh about 43

potnlds based upon experience with similar experiments.

To permit a reasonable probability of obtaining two such vertical samples

of the aerosols within a lateral distance of 1000 ft, it is believed that a minimum

of four such balloon systems must be employed. Four such systems will pro-

vide coverage over 3000 feet, or an 18 degree arc, which will be necessary to

compensate for the short-term wind variability, particularly with the light

winds usually encountered with a stable atmosphere. Further investigation of

the actual short-term wind variability at the site will be required to assure

that four balloon systems will be adequate. Additional flexibility to meet the

larger scale wind variations can be obtained by varying the balloon launch sites

on a day to day basis depending on the specific directions anticipated. Some

fifteen sites should be prepared every 1000 ft along the sampling arc (radius

3 km). With the flexible system proposed, a balloon could be re-located to

another site within one hour.

The balloon system recommended consists of the pre-inflated balloon

attached to a specifically designed four wheel wagon. Built into the wagon is

a gasoline powered capstan or winch, the necessary dry cell batteries and

switches required for the power for the lights, the power cable, and the tether-

line. The wagon should be designed to be towed by a standard vehicle, sedan

or pick-up. Operationally it is envisioned that the balloon wagon would be

stored in an available government furnished hangar (40 ft long x 14 ft wide x

20 ft high) and towed to the site selected for a particular experiment.

2.4.6 Surface Wind and Temperature Systems

An anemometer system s h o u 1 d have a low threshold starting.speed

(preferably under 1 mph), good resolution and accuracy at low wind speeds (1

to 5 mph), and good reliability in continuous use. Fine time resolution of flow

is not required. The main requirement for a temperature measurement
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system is that it have a reasonable accuracy in measurement and exposure (1

to 2°F) and needlittle maintenance.

A low threshold of wind speedwill be obtained only with a sensitive

anemometersystem and rules out the more rugged and reliable systems such

as the Aerovane. Available for selection are systems such as the Climet CI-3

or CI-9, the Beckmanand Whitley model 50or WS101,the MRI Velocity Vane.

Current prices for these systems, with signal conditioners but without

recorders, range as follows:

B&W Model 50 $4,925

Model WS101 1,640

Climet Model CI-3 1,322

Model CI-9 2,872

MRI Velocity Vane 1,395

with Vectorsyn 1,540

The Climet model CI-9 is a digital read-out system and the price includes its

recording function. Its sensors are the same as the CI-3 model. The B &W

model 50 hasa capacitive direction transducer andthe MRI Velocity Vane has

an optional Vectorsyn direction transducer. Remaining systems use poten-

tiometers as direction transducers. It seems, then, that the cost of sensitive

wind-speed and -direction measurement systems, without recorders, is in the

range of $1322to $1640,andthat a reasonable budgetestimate would be $1600.

Graphic recorders usually supplied with wind systems are of the

d'Arsonval-type, a common examplebeing the Esterline-Angus Graphic

Recorder. Prices of recorders recommendedfor use in these systems lie in

the range of $1000to $1200. Recorders would best be power-line oper.atedfor

time synchronism of records and be capable of operation for lengthy periods

without attention. Full scale wind-speed readings shouldbe limited to 30mph
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or less, to obtain reasonable resolution and accuracy at windspeeds of 1 to 5

mph. For maximum accuracy, recorders should be subject to a "dither"

current to reduce the effects of pen stiction.

A moderately accurate survey of air temperature can be made, at some

inconvenience but at low cost, by good quality mechanical thermographs in

standard meteorological instrument shelters. A shelter/thermograph combin-

ation costs $320 plus installation. The main disadvantages of this proposal is

that the instrument (a one-day chart is assumed for reasons of time definition)

Would have to be serviced the day of an experiment and that, without daily

servicing, continuous records would not be available for general studies. For

these reasons an electrical method of temperature measurement and recording

is suggested.

A resistive thermometer and potentiometric strip-chart recorder cost

about $100 and $850 respectively. No interface equipment is needed. The

thermometer element must be aspirated and shielded against radiation at a

cost ranging from $275 to $350 for a motor aspirated shield. A possible alter-

native is the Climet vane aspirated shield at $90, which should be m ore than

adequate for experiment conditions but not for a full micro-climatology study.

The measurement of airflow for trajectory calculations critically

depends upon the placement of the sensors. Considering the usual height of

interfering structures and trees in the Huntsville area to be 30 to 40 ft, it is

suggested that an anemometric level between 50 and 75 ft be considered for

the general installation. For budget purposes a tower of 70 ft will be assumed.

A tower must be of a pattern that permits easy instrument access and

maintains good azimuth reference. Fixed or telescoping multiple-guyed posts

of the TV-trade are not deemed suitable Non-guyed utility poles, with steps

and safety hoop, may have application where guys are objectionable but

installed prices are as high as for inherently more desirable tower types.
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Fixed, guyed,lattice towers or self-supporting lattice towers also must be

climbed for instrument maintenanceand may also be objectionable becauseof

reqturement for guys or extensive bases. Lattice towers may be purchased in

telescoping or folding designs,but these usually involve guying arrangements.

It is thought that tower selection wouldbe conditional uponthe specific site and

that an estimate of cost would be basedon a hinge-guyed fold-over tower to 70

ft, with its probablecost of installation and eventual removal and site restora-

tio_._..

Allowancesare listed for instrument cables for the run downthe tower

and horizontally to a recorder location, for outdoor protection of recorders,

for power installation and for easementrights. These costs will vary from Site

to site and anattempt has only beenmade to list an average value.

A major variation in this plan is available with the use of the Climet CI-9

digital system. The sensors are the same, the overall cost is very close to the

same, but the output is in the form of punchedpaper tape instead of graphic

records. The punchedpaper tape is not in a directly computer-compatible

form and must be converted to a suitable medium before automatic analysis.

The basic punchis a mechanism producedby Fischer and Porter and is used

extensively by the Federal and State governments for meteorological, geological,

hydrographic,andtraffic control studies. Conversion is available as a service

by Fischer andPorter or a converter, at a cost of $6500,can be used to oper-

ate a leased IBM key punch. It is visualized that a digital system would output

ten-second averagesof wind speed,wind direction, and, if present, air temper-

ature, every two minutes (or 5, 10, 15, 30 minutes). A fuller investigation

would have to be made to ensure that adequate digital definition of the variables

over the ranges required would be obtained. Because of potential savings in

the data reduction phase, a digital recording system should be seriously con-

sidered.
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2.4.7 Wind and Temperature Measurements to 300 ft.

Instrumentation for wind speed, wind direction and temperature record-

ing has been discussed under surface measurements. A digital recording sys-

tem could be made common to the three groups of instruments on a tower and

it would then be economical to procure a system that outputs data directly on

computer-compatible tape. Total cost of such a system would be marginally

less than one employing graphic recorders.

Wind measurements for diffusion parameters may be obtained from

suitable sensors such as tri-axis anemovanes, either by direct, on-line,

computation and recording of an individual parameter or by recording the

sensor outputs in a high-fidelity medium and the subsequent calculation of the

various parameters from the record. The latter approach has the advantage

of retaining the original sensor signals for any type of analysis later conceived.

There are three degrees of cost and complexity available in the approach

to the requirement. If a measure of the lateral fluctuations of the wind would

give an adequate measure of diffusive power, the output of the sensitive wind

direction vane could be recorded for later analysis, or a parameter computed

from it and recorded graphically or digitally. It is considered that this

approach would be inadequate in this application and costs are not being pre-

sented. The next degree is to use a tri-axis anemometer as a sensor and to

process its signals into pseudo-parameters for graphic or digital recording.

In this approach the major consideration is the cost of "on-line" processing

of each of the three signals. It would be economical to calculate only a single

approximate function for each signal. For example, short-period maximum-

deviation-from-the-mean costs about $300 per signal to calculate, a true

"sigma" for fixed periods costs in the region of $3000 per signal channel. The

calculated function can be recorded graphically at a cost of $600 per signal or

recorded in an existing digital system at very little increment in cost. The
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third degree is to commit the signals from tri-axis anemometers into magnetic-

tape storage and to rely for all parameters on an analysis of these records in

storage. Only magnetic tape, electron oscilloscope, or light-beam galvanometer

systems are knownto record analoguesignals with sufficient fidelity for sub-

sequentspectral analysis. Suitable magnetic tape recorders cost about $9000

for seven signal channels, $14,000for fourteen signal channels. A major cost

is in the subsequentconversion andanalysis of these recorded signals. While

it is difficult to estimate costs of conversion and analysis becauseof the many

factors involved, experience to date suggestscosts in the vicinity of $30,000.

Tri-axis anemometerscanbe of several basic types, including sonic and

three-component propeller-wheel, but the commercial units currently available

are the bi-vanes with attached propeller wheels for windspeed. Three such

anemometersare the Gill Anemometer Bivane, cat. 21001,Climet Axiometer,

model CI-12 andthe MRI Vectorvane, model 1053. Prices for these systems,

without recorders, range from $1100to $1400. The Gill vane has a D.C. gener-

ator tachometer for a windspeedtransducer while the other two use a chopped

light-beam system. The MRI Vectorvane system can record "sigma" of the

two vane channels,and thisis done on a two channel E-A graphic recorder at an

additional cost of $1850. The Climet Model CI-12 also has an optional "sigma"

output. If tri-axis anemometer outputsare to be stored for subsequentpara-

meter analysis, the signals must be recorded on a low-hysteresis system such

as f.m. magnetic tape. Records with pen and paper charts suffer from hystere-

sis distortion, resulting in intolerable spectrum distortions. Light-beam

recorders donot suffer from this type of distortior_ but such records present

formidable data-extraction task. An example of f.m. magnetic tape recorders

is the GeotechnicalCorporation 7-channel recorder produced specifically for

slow-speed geophysical and meteorological applications. Its cost is $8750.

StandardI.R.I.G. 14-channel recorders with adequatesignal monitoring cost

about $14,000each andmay be purchased from any of several companies.
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In viewing the tower instrumentation as a whole, it may appear that

redundancy in wind sensors exist, and this is so if a tri-axis anemometer can

also perform continuously the functions of a wind-speed and -direction instru-

ment. This is not necessarily the case, and potential savings of up to $1600 per

level may be illusory. The possibility should, however, be followed up and

made a factor in assessment of tri-axis anemometers.

The cost of a 300-foot tower depends upon the cross-section of the tower.

A 36-inch section tower with inside ladder and working level platforms, lights,

paint, costs very close to $10,000 installed. A bare 20-inch section tower

with lights and paint costs $5,000 installed. A 20-inch section would need a

ladder and safety rail if it were to be climbed by instrument technicians.

Alternatively, it is thought possible to have an instrument elevator on a 20-inch

tower to ease instrument maintenance problems. Costs will be based on the

36-inch section tower as these should be adequate to cover other satisfactory

patterns. Costs for removal of tower and restoration of site have not been

included in costs of a 300-ft tower installation, nor have easement costs been

included as it is assumed that installations of towers will be made on the

Marshall reservation and that the towers would be retained for continuing

meteorological measurements.

2.4.8 Measurements of Wind and Temperature Above 300-ft Height

The facilities of MSFC for rawin ascents using the GMD-2 rawin with Q9

sonde and the integrated A. D.P. system should give the type of information

required. The experimental balloon ("Jimsphere") is likely to be needed to

avoid the introduction of spurious oscillations into the data used to determine

diffusion parameters. A number of ascents, closely spaced in time, would be

specified. This may require some technical modification to the sonde to pre-

vent interference between successive ascents.
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Two double-theodolite pibal stations, one placed in the plain towards the

east and another in Huntsville would reveal anyareal variations in wind flow.

Theseascentsshouldnot be necessary above5000feet and termination height

would beweather-dependentin anycase.

2.4.9 Physical Facilities

The material resources required to undertake this experimental pro-

gram are discussed briefly in this section. There are certain of these

resources which must be furnished by the government {GFE) if an effective

experiment is to be conducted. Such resources are indicated herein and are

not included in the cost estimates. Other resources which could well be pro-

vided by the government are indicated as GFE optional but are included in

the cost estimates. For convenience, a summary of the resources in each

of these two categories is included at the end of this section.

A reasonably centralized location is required for a field operations

center consisting of a building of approximately 3000 sqft and ample parking

space immediately adjoining for a minimum of ten vehicles. Adequate space

should be available within the building for an office consisting of about 400 sq ft

and an instrument work shop of 300 sqft. Standard plumbing and electrical

facilities will be required. The space will be used for equipment layout and

storage, personnel training, assembly, and management and administration

of the operation. In addition, 150 sqft of remotely located dry storage space

will be required to store the tracer material and dispensing equipment. This

material cannot be stored at the field operations center since it would contam-

inate the sensing instruments. The Operations Center is considered GFE

optional; the dispenser and aerosol storage is required GFE.

Of the 262 sampling sites proposed in Plan C, 123 are believed t}) be on

U.S. Government Property. The remaining sites are either on private pro-

perty or municipal property. It is, of course, essential that the government

*These figures are for plan C. Plan A requires much less space.
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authorize access to suitable sampling sites on government property. In most

cases, a sampling site consists of a suitably open space where a metal fence

post can be placed to hold the sensor during an experiment. In many cases it

is anticipated that agreement can be reached with the local utility company to

permit brief use of existing telephone poles. In some cases, however, individ-

ual agreements will be required with private property owners. In previous

programs there has been little difficulty in obtaining public support for scien-

tific experiments. The sequentializer samplers will in most cases be placed

in the same locations as the rotobar sensors.

Of the twenty 70 ft tower sites selected in Plan C, eight are believed to

be on government property. Authorization for use of the sites and construction

of the towers would be required. The additional twelve sites are on municipal

or private property and leases would be required. These towers will require

installation of 110 V single phase power outlets for instrumentation. It is

assumed the power would be provided GFE for the sites on government pro-

perty.

Both sites for locating the 300 ft meteorological sensing towers are on

government property. Authorization for use and construction of the towers,

and for power installation is assumed to be government furnished.

Suit able storage in a hangar or warehouse for the four balloons will be

required for Plan C. Four bays 40 ft long, 14 ft wide, and 20 ft high {total

area 2240 sqft) will be required with suitable doors to permit passage of the

balloon wagons. One or two 12,000 cu ft helium tanks will also be stored in

this area. If at all possible, the area should be secure and thereby prevent

tampering with the somewhat fragile balloons. It is considered essential that

this be GFE since it is necessary that the storage be as close as possible to

the 3 km sensing arc.
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Somefifteen balloon operating sites will be required. Ideally, an area

200 ft squarefree of neighboring obstruction is desirable. Each site would

be equippedwith two ground anchors andassociated surface cable. It is essen-

tial that adequatespacebe made available by the government at or near the 3

km arc for thesesites.

The following quantities of helium will be required for operation of

balloons:

Initial inflations

Topping-off

Pibal runs

The provision of helium is GFE optional.

20,000 cuft

6,000 cuft/month (eight months)

2,000 cuft/month (small tanks, 9
months)

Standardoffice furniture consisting of desks (4), tables (5), and chairs

(4 desk and 15folding) will be required in addition to customary office supplies.

These items are considered GFE optional.

The following communications will be required:

a. Telephones--required at the Field Operations Center, source site,

andballoon hangar. It is believed essential that telephone service be provided

GFE for anyof these sites which are on government property. If the operation

center is GFE, it would also be desirable to authorize contractor use of govern-

ment tie-lines or WATS service.

b. RadioCommunications--Two-way radio communications (range of 9

miles) are required betweenall field assigned vehicles to permit coordination

of the various operations. This is GFE optional but should, perhaps, be con-

sistent with provision of the vehicles.

c. Facsimile--a facsimile line and receiver will be required for receipt

of the standardweather charts for planning and scheduling experiments. This

is GFEoptional.
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d. Walkie-talkies--up to eight walkie-talkie units (2 mile range) will be

required for balloon system and tower maintenance purposes. This is GFE

optional.

For routine field use, one station-wagon and one 1/4 ton pickup truck

will be required full time. When experiments are scheduled, additional

vehicles will be required depending on the plan adopted. The station wagons

are required for transporting the sensitive instrumentation and the trucks for

aerosol samplers in quantity. These are considered GFE optional. If they are

to be GFE, it is recommended an adequate priority be assigned to assure avail-

ability, particularly during experiments.

Summary of GFE Resource Items

Required GFE:

a. Aeroaol Sampling Sites.

b. Meteorological Surface Station Sites (8) with power.

c. Tower Sites (2) with power.

d. Balloon Storage.

e. Balloon Operating Sites (15).

f. Rawinsonde Observations--equipment and operation.

g. Source Sites.

h. Dispenser and Aerosol Storage.

i. Telephone for principal on-base sites.

j. Two L-19 class aircraft and one pilot.

Optional GFE:

a. Field Operations Center.

b. Office Supplies and furniture.

c. Helium.

d. Vehicles with two-way radios.
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e. Facsimile Circuit andReceiver.

f. Walkie-talkies.

No attempt hasbeen madeto determine what, if any, instrumentation

or operating personnel could be provided by NASA. Discussion in this regard

is suggested.

2.5 Recommended Phasing_ Operation and Manpower

The following section describes the phasing schedule for the field pro-

grams, operational procedures, manpower required for field operations and

management functions.

2.5.1 Phasing

To accomplish a program of the magnitude and scope required to fulfill

the technical objectives, a five phased program is recommended. During the

first phase, Program Activation, the detailed analyses will be undertaken to

determine the specific instruments to be employed in the program, considering

the various trade-off factors of effectiveness, reliability, maintainability, cost,

etc. The selected instruments will be processed, delivered to Huntsville,

installed and checked-out. Concurrently the detailed logistical problems will

be analyzed and solved following an initial site survey to be conducted as a

first order of business. A minimum of three to six months is required to

accomplish the program activation phase depending on the plan adopted. Dur-

ing the first four months of the activation phase for Plan C, the planning,

procurement, etc., would be undertaken from the contractor's home office.

The Huntsville field operation would be activated during the fourth month to

allow two months for installation, check-out, training and tests. Upon comple-

tion of the phase, all resources are in a state of readiness.

The second phase is the first of two four-month operational periods and

should be conducted during the months of October through January to acquire

seasonal data for the fall and winter periods. Test experiments would be con-
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ducted whenever operationally feasible.

The third phase, during February and March, is essentially a stand-by

phase to await seasonal changes. However, during this phase all required

instrument maintenance will be performed to assure high reliability during

the ensuing operational period.

A second operational period constitutes the fourth phase and is identical

with phase two except that it is conducted during April through July to acquire

data during the spring and summer seasons.

The final or deactivation phase will require three weeks and involves the

removal, packing and shipping of all instrumentation and equipment.

2.5.2 Operations--Spill Experiments

Twelve to twenty tests are proposed for each operating period to be con-

ducted under various environmental conditions. The meteorological conditions

desired are:

a. West through south-southwest winds to 500 ft with various speeds

up to 25 mph.

b. Various stability conditions with one-third being inversions.

c. No precipitation or thunderstorms.

d. Base of clouds 1500 ft or higher (for balloon operations only, Plan

C_.

e. Visibility 3 miles or more (for balloon operations only, Plan C).

For experimental purposes, fluorescent particles will be dispersed into

the atmosphere from the surface for periods up to 30 minutes per experiment

at rates up to 10 gram/sec. To assist in defining the specific air trajectories

for selecting balloon sites in Plan C, smoke releases will be made two hours

before release time and occasionally again one hour before release.

Surface tracer sampling and meteorological measurements have been

8?
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discussed previously. Details of sampling above the surface for Plan C are

outlined below.

Four tethered balloon systems will be located at pre-selected sites,

varying with the wind trajectory, along the 3 km arc. They will be placed

1000 ft apart and hence will cover a 3000 ft segment of the arc. Six airborne-

_pe rotobars plus three combination sensor and light units will be carried on

each system with vertical sensor spacing of 50 ft. A total of 36 samplers

and 12 light units are required.

If aircraft sampling is performed, two light planes of the L-19 class

will be equipped to measure and record aerosol concentrations continuously

for total dosage and/or in short time increments to permit space and time

resolution of the cloud material. The aircraft will fly concurrent lateral

traverses through the cloud at assigned altitudes (this depends on the expected

rate of vertical diffusion) south of the Madison County Airport and over

Huntsville. At least three traverses will be made at each of the assigned

altitudes and locations.

2.5.3 Static Firing Experiments

The number of tests required are considered to be five each operating

period, ten total, to be conducted in conjunction with NASA scheduled tests,

usually in the late morning or afternoon.

Meteorological conditions desired are:

a. West through south-southwest winds to 300 ft with various speeds

up to 25 mph.

b. Various stability conditions.

c. No precipitation or thunderstorms.

d. Ceilings greater than 5000 ft and visibility greater than three miles

for aircraft operations in Plan C.
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As discussed in the tracer section, further analysis is required prior to

final selection of the tracer for this experiment. However, it appears that a

rare earth material is feasible for injection into the exhaust plumes, and it is

assumed that the same aerosol sensors used in the spill experiments will be

effective. The tracer will be disseminated for the full period of the static

firing at a rate commensurate with sampling sensitivity, but the total amount

required will be on the order of 10 lbs.

Ground sampling will be conducted with rotorods as outlined in the spill

experiment but with a reduction in density to that outlined in Appendix A for

all plans, and sequentializers in the same manner as described for the spill

experiments. Vertical sampling will be conducted in the same manner as the

spill case with an additional traverse near the source and altitudes appropriate

to the source height.

2.5.4 Manpower and Management

Personnel requirements and costs are based on experience that the

Travelers Research Center_ Inc. has accumulated in conducting field programs

of this type. Personnel costs listed in Section 2.7 are based on TRC cost

schedules. The manpower and training requirements will be discussed for each

of the prime functions involved in the operation during phases 2 and 4. In some

cases the same individuals can perform dual functions with proper scheduling.

A field director and assistant will be provided by the contractor.

Two to four teams of two men each will be required for laying out and

collecting the ground samplers. These people can be hired and trained

locally. A contractor-provided supervisor will train and oversee the operations.

Table 2.2 below lists positions and manpower requirements by Design Plan.

Instrument technicians will be required to install, operate and maintain

all meteorological instrumentation. One technician should be from the con-

tractor' s permanent staff.
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T_vo observers and one recorder will be required for each double theo-

dolite observation site. Every attempt will be made to hire and train local

personnel.

One locally hired person of suitable talents will be trained to operate

the aerosol dispenser apparatus.

For balloon operations, a three man team is required to fly each balloon

with the assistance of a roving two-man launch team. As a minimum, a balloon

system supervisor will be provided by the contractor; it may also be necessary

for the contractor to provide some site leaders, but attempts should be made to

hire and train suitable personnel locally. Table 2.2 summarizes the manpower

requirements for the field programs described.
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TABLE 2-2

MANPOWER SUMMARY

Position

Field Director

Ass' t Field Director

Secretary (part-time)

Instrument Technician

Aerosol Sampling Super-
visor

Sampling and Balloon

Assistants

Pibal Observers

Dispenser Operator

Balloon System Super-
visor

Balloon Site Chiefs

Balloon Launch Team

Totals

TRC

Local

Plan A Plan B Plan C

Number Source Number Source Number Source

1 TRC 1 TRC 1 TRC

1 TRC 1 TRC 1 TRC

1 local 1 local 1 local

1/4 TRC 1 TRC 2 1-TRC

4 local 6 local 8 local

0 0 6 local

1 local 1 local 1 local

0 0 1 TRC

0 0 4 2-TRC

0 0 2

8-1/4 11 28

2-1/4 3 7

6 8 21

Management of the field program will be accomplished by the contractor.

The Travelers Research Center, Inc. would establish an operating location in

the Huntsville area for the purpose of undertaking the proposed field experiment-

al program. An experienced senior individual would be assigned as field direct-

or to be responsible for the conduct of the program. Administrative support

will be provided from TRC, Hartford, to the maximum extent possible. All key

positions will be filled by experienced TRC personnel. Additional TRC personnel
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would be used as required; however, every attempt will be made to hire and

train suitable personnel locally as a means of redueing eosts.

2.6 Data Analysis and Processing

Colleetion of tracer and meteorological information must be followed by

assay, analysis and synthesis into final diffusion models that describe the pro-

cesses that took place during the experimental program and the extension of

these results into a prediction system that can be used routinely in the user' s

operations. Alternate assay techniques are diseussed where alternative tracers

are presented and alternate data reduction systems for meteorological inform ation

are considered based on the type of sensor output assumed. Costs of the alter-

natives are considered in Section 2.7.

2.6. 1 Tracer Assay

Assay techniques for fluorescent pigments are comparatively inexpensive

and reliable. The basic technique is to eount the number of particles on a roto-

rod or filter with bright field microscopic techniques when the sample is ilium-

inated with ultra-violet light at about 3600 Angstrom wave length. The fluores-

cent tracer particles are easily identified by their fluorescent color, and the

number of particles on a rotorod are counted by traversing the rod through the

field of view. Filter media are counted in much the same manner with a gridded

eyepieee. Time required to count eaeh sample varies with experience and

amount of material collected. An informal quotation from one organization that

does assay work was $2.00 per sample for rotorods exposed on one side in the

quantities discussed here. Filters were quoted at $4 to $5 each. An investment

of about $2000 will provide the necessary equipment to set up two counting sta-

tions (microscope with appropriate light sources for eaeh), and the counting can

be done by field personnel on a spare time basis between tests as an alternative

to outside assay work. Investigation of other organizations which perform
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assays should be pursued, but the quotation received is considered here for

cost estimates.

Aircraft sampling requires different procedures and collection devices

because time resolutions of a higher degree than can be obtained with conven-

tional filter media are required. For the past two years, Hanford

Laboratories in Richland, Washington have been developing a device for auto-

matically measuring and recording phosphorescence passing through the field

of view. The device has the advantage of providing real time information to the

observer in the aircraft, and he can actually search for a cloud of material.

Positive collection is made and results can be checked at a later time so that

calibration for each run is required. One area of concern is that nothing is

known of the possible effect the exhaust material of the static test might have

on the fluorescence of the tracer or possible contribution to fluorescence from

the gases. Cost of the instrument with recorder is estimated at $5000.

Rare earth tracer assay requires elaborate analysis techniques, and the

cost is high compared to fluorescent pigment. Present rates are quoted as

$15.00 per sample, but previous processing has been done in limited quantities.

Assays are performed by neutron activation and electronic counting methods

rather than visual methods. One further disadvantage, aside from the cost of

the tracer and assay, is the inability to make spot checks in the field to deter-

mine probable success of each experiment.

2.6.2 Meteorological Data Reduction

Referring to Section 2.4 for the surface wind and temperature system,

two basic types of recording are described. One provides digital readout,

and the only off-the-shelf model does not provide computer compatible tape;

the second method is graphic analog recording of each sensing element. In

this section, costs to prepare the information for entry into a computer for

subsequent analysis are considered. Surface systems are designed to measure

93

I



flow and not turbulence, therefore observations may be less frequent in time.

The Climet CI-9 system is only capable of readout at hvo-minute intervals so

graphical methods are assumed at the same rate for comparative purposes.

Assuming 10 hours of data per test at 20 stations with a total of 40 tests

(all estimates are liberal to allow for aborts, delays, etc. ), there will be

240. 000 observations of wind direction and speed and with these temperature

stations in the system, 36,000 observations of temperature. Thus there are a

total of 516.000 observations assumed for all tests. Conversion of the Fisher-

Porter tape to IBM punched cards costs $2.00 per 1000 observations plus a fee

of $1.00 per tape. Therefore this cost from sensing to punched cards is $1032,

plus approximately $300 for tape fee charges yielding a total of $1332 for sur-

face data reduction. Manual reduction of graphic records based on previous

experience is estimated for 516,000 observations at $2554. This figure is

based on 2.8 man-hours per 1000 observations to read, record and key-punch

graphically presented information. Estimates are further based on costs of

$1.75/hr wages and 5_ per 1000 observations for cards. Considering the cost

of the original equipment, the digital readout and conversion are less expensive

and require less time to go from observations to computer-ready data.

Analysis costs are the same no matter how the data were prepared for

the computer. It is assumed that means, variances, differences between sta-

tions, and summaries are required for analysis. Computer costs for this

portion should not exceed $1000 for Plans B or C.

Reduction and analysis of tower turbulence data described in Section 2.4

is a problem of much greater magnitude. If the sensing and recording system

provides a true "sigma" value, very little processing is entailed beyond the

data acquisition and subsequent correlation with tracer measurementsl Ana-

lysis is severely limited because the "sigma" value is for a fixed time and

P a s q u i 11 * has shown that for best comparison, the computed wind standard

• Pasquill, F., 1961, The estimation of dispersion of windborne material,

The Meteorological Manazine, Vol. 90, 1063, Feb., 1961, 33-49.
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deviations should be a function of travel time. Costs of this system are com-

parable to that of recording and analyzing fxn. magnetic tape so it is not deemed

feasible.

If f ra magnetic tape is used as the recording medium, the data may be

processed in two ways. The analyses can be performed on analog computers

to yield means, variances and power spectra or the data can be converted to

digital input for processing in digital computers. Costs in both cases are

similar and previous experience indicates an estimate of about $30,000 for

processing data in the quantities expected from this program for Plan C and

$20,000 for Plan B.

If slightly reduced amounts of information are compatible with the overall

objectives of the program, considerable reduction in the analysis cost can be

made by computing only the spectral analyses. Total variance can be mea-

sured from the spectrum and contributions from various averaging times can

be obtained. Mean values are missing, but they are of least importance in

turbulence measurements. This method of analysis can be accomplished

through use of a General Radio Spectrum Analyzer if the tape recorder has

the capability of loop playback. Additional hardware costs are in the vicinity

of $4000, and associated personnel costs to set up the equipment and perform

the analyses are estimated at $7000. While the information available is less

complete than with a full scale data reduction program, it has the advantage

that investigation may be more carefully controlled by the scientist using

the information in relating it to measured dispersion rather than one large

scale effort where all the data are analyzed at one time. Total costs are

estimated at $11,000 for Plan C and $9,000 for Plan B.

2.6.3 Synthesis of Tracer and Meteorological Data Analyses

The primary objective of the experimental program described above is

provide information that will enable MSFC users to adequately describe
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diffusion processes either through the use of existing models with experimental-

ly determined parameters or through the use of newly developed models based

on this program.

Some of the results and questions to be answered by the experimental pro-

gram are listed below. Of course some can only be answered by the more com-

plex designs of Plan B and Plan C.

a. Comparison of cloud trajectory with anemometer and balloon mea-

sured wind trajectories.

b. Are there preferred trajectories due to topography under different

stability conditions ?

c. Is the assumed statistical diffusion model adequate to describe the

diffusion processes taking place ?

d. Measure parameters necessary for use of diffusion model.

e. What is the ratio of peak to average concentration?

f. What is the effect of buoyancy on surface concentrations for static

firing cases ?

g. How are turbulence measurements at the towers related to the dif-

fusion of material ?

h. What is the distribution of material along the axis of translation of

the cloud ?

i. What is the crosswind distribution of material?

j. What is the vertical distribution of material?

k. Are there areas of anomalous dosage due to topography?

The above items are a partial list of the problems to be considered in the

analysis of field experimental data. From here the analyst will proceed to

describe the diffusion processes in the MSFC area with appropriate mathemati-

cal models for the area. Once the model has been developed, it may be supplied
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to the user as a computer program or a series of nomograms or both. Any

assumptions or deficiencies in the model will be discussed along with its

strong points so the user will be able to assess, at least subjectively, the

confidence level of predictions made during routine operations.

2.7 Cost Analysis

Costs are presented below for each of the three experimental plans pre-

sented in the preceding sections. Objectives are stated once more for reference

and items considered to be government furnished are listed. Cost summary

sheets contain systems or groups of items, therefore additional tables have

been included at the end of the section to show how equipment and installation

costs were prepared by individual item.

2.7.1 Cost Summary for Plan A

Objective of Plan A -- To verify predictions of peak concentrations and

total dosage made with the model in part I of this report.

The following equipment and facilities are considered government fur-

nished for this plan:

a. Field operations center with separate tracer storage area.

b. Office furniture and local telephone.

c. Sampling and source locations on government controlled property.

d. Rawinsonde observations--equipment and operation.

e. Vehicles--one pickup truck full time and one for tests only.

It is assumed that a satisfactory method of introducing fluorescent

particles into the rocket plume will be developed for the costs in this plan.

If this is not possible, an additional $17,000 will be required for tracer pur-

chase and assay.
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Plan A

Cost Summary

Equipment

2 Wind systems and 70 ft towers $7500

12 Sequential samplers and power

supplies 5040

80 Rotorods and batteries 7200

1 FP Dispenser 3200

2 Stations of assay equipment 2000

2 Battery Chargers 160

Supplies

200 lbs. Prepared FP 2280

Filter tapes (48 roils) 100

Hardware and site preparation 400

Field Serviees

Salaries--part-time help 30 man months 10,800

Vehicle Rental 2,000

TRC Personnel living expenses,

540 days @ $15.00 8,100

Direct Costs

Salaries--Sr. Research Sci. 3 man-mos.

Res. Scientist 10

Staff Associate 10

Electronic Tech. 2

Sr. Research Aide 3

Clerk 1

Employee Benefits @ 30%
Travel

Other Direct Charges
G & A@ 70% of TDC

2 6,800

8,040

1,800

1,045

26,380

$37,685

64,065

98

$24,500

2,780

20,900

64,065

$112,245
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2.7.2 Cost Summary for Plan B

Objective of Plan B -- To verify predictions of peak concentrations and

total dosage made with the model in part 1 and to verify the horizontal diffusion

coefficients and infer the validity of the estimated vertical diffusion coefficients.

The following facilities and equipment are considered government fur-

nished for the costs of this plan:

a. Meteorological surface station sites with power (5).

b. Tower site with power.

c. Sampling and source locations on government controlled property.

d. Rawinsonde observations--equipment and operation.

e. Tracer storage area.

The following cost summary lists equipment, supplies and services to be

supplied by the contractor in performance of this program.

Plan B

Cost Summary

Equipment

10 Surface Wind Systems and 70 ft towers $37,500

3 Temperature Systems 4,400

1 300-ft tower 10,200

3 tri-axis anemometers 7,350

1 IRIG f.m. Tape Recorder 13,000

3 Tower Temperature System 3,570

1 FP Dispenser 3,200

19 Sequential Samplers and power supplies 7,980

185 Rotorod samplers and batteries 16, 600

Site Preparation 1,000

2 Sets, assay equipment 2,000

2 Battery chargers 150
Mobil radio net. 2,300

Supplies

180 lbs. FP assayed 2,050

Magnetic Tape 1,000

Filter Tapes 125

Local Hardware Purchases 600

$109,250

3,775
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Plan B (cont.)

Field Services

Salaries for part-time (56 months)

Car and Truck rental

Facsimile rental @ 106/mo.

Facsimile supplies

Land rental--instrument sites

Office Rental

Utilities

Furniture Rental

TRC Personnel living expenses

Data Reduction and Computations

f.m. Tape reduction

Surface station analysis

Rare Earth Tracer

-Assay

Direct Costs

Salaries--Sr. Res. Scientist 4 man months

Res. Scientist 18

Staff Associate 12

Electronic Technician 10

Sr. Research Aide 6

Clerk 3

Employee Benefits @ 30%
Total Labor

Travel

Other Direct Charges

Total Direct Charges

G& A@ 70% TDC

Total

i00

$23, i00

6,600

1,378

i, 122
3OO

4,000

50O

400

15,950 $53,350

20,000

10,000 30,000

1,000

22,000 23_ 000

219,375

$47,073

147 122

61,195

4,900

1,530

67,625

47,338

114,963 $334,338
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2.7.3 Cost Summary for Plan C

Objective of Plan C -- To verify predictions of peak concentrations and

total dosage made with the model in part 1, verify horizontal and vertical dif-

fusion coefficients, and develop comprehensive diffusion prediction techniques.

The following facilities and equipment are considered government fur-

nished for the costs of this plan.

a. Meteorological surface station sites with power (8).

b. Tower sites with power (2).

e. Balloon storage.

d. Balloon operating sites.

e. Rawinsonde observations--equipment and operation.

f. Tracer storage area.

g. Sampling and source locations on government controlled property.

h. Telephone for principal on-base sites.

i. Two L-19 class aircraft and one pilot.

The following summary lists equipment, supplies and services to be

supplied by the contractor in performance of this program.

Plan C

Cost Summary

Equipment

20 Surface Wind Systems and 70 ft towers $80,000

3 Temperature Systems 4,395

2 300-ft towers 20,400

6 Tri-axis anemometers 14, 700

6 Level of Temp. 7,140

6 Wind speed and Direction units 21,100

2 f.m. Tape recorders 26, 000

2 Pibal stations and associated equipment 8,560

1 FP dispenser 3,200

24 Sequential Samplers 10,080

275 Rotorod samplers and batteries 24, 500

i01



Plan C (cont.)

Site preparation

2 Sets assay equipment

3 Battery Chargers

Aircraft sampling instrumentation

Maintenance Facilities, parts and equipment

4 Balloon systems

Auxiliary balloon equipment and spares

i Mobil radio net.

Supplies

Balloon supplies

Tracer FP

Rare earth (if required)

Magnetic tapes

Filter tapes

Local hardware supplies

Data Reduction and Computations

f.m. Tape reduction

Surface station and model preparation

Rare Earth Assay

Field Services

Salaries--part-tim e

Car and truck rental

Facsimile rental @ $i06/mo.

Office rental @ $300/mo.

Utilities @ $40/mo.

Facsimile supplies

Land rental--instrument sites

Furniture rental

TRC personnel living expenses

Consultants (airborne samplings, etc.)

Direct Costs

Sr. Res. Scientist 8 man months

Research Scientist 27

Associate Scientist 40

Electronic Technician 20

102

$1,400

2,000

225

6,000

3,210

35,976

4,940

3,100

$7,768

1,710

2,100

2,000

2OO

1,200

30,000

15,000

31,000

58,114

22,985

1,378

4,550

52O

1,122

6OO

500

42,600

1,800

$276,931

14,978

45,000

31,000

$367,909

$134, 169
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Staff Scientist

Senior Research Aide

Clerk

Employee benefits @ 30%

Total Labor

Travel

Other Direct Costs (3.5% %L)

Total Direct Costs

G& A@70%of TDC

Total Direct Costs

Plan C (cont.)

17 man months

21

5

103

$119,186

351 756

155,942

8,931

3_ 874

167,747

117_ 423

285,170 $285,170

$787,248



TABLE OF COSTSFORA SURFACEWIND AND
TEMPERATURE MEASUREMENTSTATION

--detailed for graphic recording of signals

--includes maintenance costs for one year

70-ft tower

Tower, installation, removal, restoration $550

Easement for installation 100

Power--fittings, connection 50

Wind-speed and direction instrumentation

Sensors and electronics 1600

Graphic Recorders 1200

Cabling 150

Recording Shelters 100

Maintenance 0.05 man @ 250/yr

*Air temperature instrumentation

Sensor 100

Aspirator 340
Recorder 850

Cabling 25

Shelter {part of w/s system)

Maintenance 0.02 man @ 150/yr

$7OO

$3050
250 3300

$1315

150 1465

*At stations selected for measuring surface temperature.
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TABLE OF COSTS FOR AN ELEVATED WIND

AND TEMPERATURE MEASUREMENT STATION

--detailed for graphic recording of signals

--includes maintenance costs for one year

300-ft tower

Tower, installation, paint, lighting $10,000

Power, fittings ' connection 200

Wind-speed and direction instrumentation

As for surface station, 3 @ 3050 9,150

Installation and removal assistance 400

Maintenance--0.1 man @ $1000/yr 1,000

Air Temperature Instrumentation

Sensor 100

Aspirator 340

Cabling 150 --3 @590 1,770

Multichannel potentiometric recorder 1,500 3,270

Maintenance 0.04 man plus $300/yr 300

Air Turbulence Instrumentation

Sensors and electronics 1400

Cabling (average) 250 --3 @ 1650 4, 950

Installation and removal assistance 400 5,350

Maintenance 0.2 man @ $2000/yr 2,000

Recorder for air turbulence signals

IRIG Magnetic tape recorder,

10 ch. record., with monitor

Magnetic tape, estimate 14,000

Maintenance 0.04 man @ $200/yr 200

13,000

1,000

$10,200

$i0,550

$3,570

$7,350

14,200
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TABLE OF COSTS AND REQUIREMENTS
FOR AEROLOGICAL SOUNDINGS

Rawinsonde to 10,000 feet

System: MSFC Ts GMD-2, ADP
Definition: 50 meters

Frequency: 15 minute intervals

Number: 6 to 12 per experiment

Responsibility: MSFC

Double Theodolite Ascents to 5000 feet (two stations)

Warren-Knight theodolite (4) $4000

Pibal timers (2) 180

Communication headsets (6) 250

Power arrangements 50

Communications cable 300

(or commercial line rental)

Supplies per experiment: Balloons $10

Helium 25

Lighting Units 10 45

Training flights and aborts: 45

One Year: 42 @ 90

$4780

378O
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$8560
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AEROSOL GENERATION AND SAMPLING FOR SURFACE SOURCE

Generation

Fluorescent Particle Dispenser

Fluorescent Pigment--assayed, 150 lb.

Surface Sampling

Rotorod samplers--purchase and modification

275 @ $80

Location costs--280 @ $5

Batteries for 40 exp.--1250 @ $2.00

Sequential Sampling at Surface

Incremental Sampler 345
Power Inverter 50

Battery 25
24 @ 420

Portable tower for source sampling

$3200

1710

$22,000

1,400

2,500

Sampling on fixed 300 ft tower - fittings

Analysis equipment for rotorod samplers (single station)

--Ultraviolet lamps, traveling stage microscope

107

$4910

$25,900

10,080

300

100

1,000

42,290

!
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BALLOON SYSTEM COSTS

Equipment

i. Balloon Equipment

a. Balloon System Design: $3,000; 750/system

b. Balloon--Aerodynamic, 2,000 cuft (in quantities

of 4) 45 # to 450 ft.

c. Lights--tetherline and balloon, 4 @ $100

d. Rotorod Samplers: 6 airborne units, 1 spare@ $100

6 auxiliary units for lights,

1 spare, $25

e. Tether--2 600 ft lines, 2000 # @ $. 08/ft

f. Winch or Capstan--gasoline, 2000 # capacity

g. Power Cable--600 ft @ $.03/ft

h. Ground Power--switching

i. Balloon Wagon--special design

j. Balloon Tool Kit and Miscellaneous Hardware

k. Pulleys
Cost per balloon system

Four balloon systems

2. Auxiliary Equipment

a. Tether Point Ground Anchors, 30 @ $8.00

b. Walkie-talkies, 6

c. Spare Balloon

Total Equipment

H. Supplies

a. Ground Power Source--batteries, $20/trial x 18

b. Rotorod batteries--$54/exp, x 15

c. Helium

(i) Inflations 2000 cuftx I0 = 20,000 ft 3

x .09¢/cuft; 1,800. O0

108

$750.00

4,500.00

400.00

800.00

96.00

520.00

18.00

50.00

1750.00

85.00

25.00

$8994.00

35,976.00

240.00

200.00

4,500.00

4,940.00

$40,916.00

$360.00
810.00
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e.

(2) Topping-off:

$1180 x 4 mos., $4,720.00 --

Nylon line, 2000 lb. test;500 ftx $.06

Fence Posts--24 @ $2.00

50 ft3/day/balloon,

6000 ft3/mo., 12,000 cuft

tank, 2 mos., $1080

Tank rental 100

Two mos., $1180
Helium

Total Supplies

109

$6,520.00

30.00

48.00

$7,768.00



COST DATA -- TRACER STUDIES

Neutron Activation

Analysis- by General Atomic Division of General Dynamics Corporation;
Approximately $15.00/sample for 2000 samples.

Tracer Materials --

Source (99.0% Pure) Tracer (Oxides of metals shown)

Michigan Chemical Corp.

A. D. MacKay, Inc.

Lindsay Chemical Div.,

American Potash & Chemical Corp. 105 635

Vitro Chemical Co. 60-70 --

Engelhard Industries, Inc. -- --

Davison Chemical Company 272 i,245

Dy Eu Ir In

$50/Ib. $1000/lb. --

105 700 2,240 99

m

1,364

n

Actual quantities required cannot be determined until sensitivity tests have

been run with rotorod samplers. Preliminary estimates indicate 22 lbs. of

tracer would be adequate for 10 static firings of 2 min. each. Dysprosium

will be used if possible.

Fluorescent Pigment

Analysis--Utah State University -- Not determined

MRI; $2.00/rotorod in lots of I00

(2 arms -- 1 side each)

Metronics; $3.25/rotorod

Source of Zinc Cadmium Sulphide

U.S. Radium

Metronics

Cost

1-4 lbs. $6.90/lb

100-500 lbs. 4.75

Pigment count and spectrum would have to be

determined.

Fluidized and packaged

Completely fluidized, assayed,

packaged in 1500 gram "squeeze
bottle"

$7.90/lb.

$11.40/lb.
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Approximately 145 lbs of pigment will be required for 24 thirty-minute

releases.

2.8 Summary

An experimental program has been presented for MSFC with three

alternatives of complexity and cost which lead to different solutions for the

problem of atmospheric diffusion in the Huntsville area. The basic experi-

mental design is the same for all programs, i.e., use of an aerosol tracer

to measure diffusion of material and resultant surface concentrations. As the

complexity and costs increase so does the understanding of the diffusion pro-

cesses.

Site visitation, perusal of topographic maps of the area, and an appeal

to some of the available climatological data have led to a design that anti-

cipates a curvature in the trajectory of material released from the static

test area in a wind flow that would result in material reaching Huntsville.

Outer sampling arcs have been adjusted to account for this assumed trajec-

tory. Several anemometer locations were suggested to measure the local

wind direction and speed during tracer trials and to provide a climatology of

flow by continuous recording during the experimental period.

A thorough mathematical analysis of the statistical diffusion model was

prepared to ensure the sampling density would be satisfactory but not exces-

sive. Most tracer programs designed to evaluate dispersion processes in the

atmosphere provide measurements of integrated concentration (or total dosage)

and the variance of the concentration. A third important measurement is that

of peak concentration, therefore provisions were made for determining this

quantity. Peak concentration is the most variable of the three parameters;

therefore the degree of accuracy required for that variable was the basis for

the density of the sampling network. The design provides for estimates correct

within a factor of 2 at 90 percent confidence for moderately stable atmospheric

iii
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conditions. The accuracy improves until stability decreases to conditions of

superadiabatic lapse rate where looping occurs and material could be lofted

over a sampling arc, but in this case the statistical diffusion model rapidly

loses validity for short term concentrations.

Plan A was designed for minimum cost to provide tracer results that

would confirm or deny that modeling studies, presented in part 1 as well as

actual measurements of dosage in the MSFC--Huntsville complex.

Plan B was designed as a practical program to go beyond the minimum

results available from Plan A and provide estimates of the rate of horizontal

dispersion applicable to the Huntsville area for use in prediction programs.

Plan C was designed as a comprehensive, but not inflated, program to

provide results like Plan A and B with additional information on vertical dif-

fusion rates and more detailed meteorological measurements for preparation

of prediction programs that would result in minimum lost time with meteorol-

ogical control of operations.

112

I

I

I
I

I
I

I
I

I
I

I
I
I
I

I

I
I
I

I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

APPENDIX A

by

Joseph G. Bryan



APPENDIX A.

Section

1.

2.

3.

4.

5.

.

7.

Fi_F_F_F_F_F_F_F_F_F_r e

i.

2.

3.

4.

Table

1

2

TABLE OF CONTENTS

Title

Introduction

Summary of Principal Results

Formulation of Statistical Model

A Numerical Feature of the Normal Curve

Means, Variances, and Covariances of the Relative Moments

I 0, I 1, 12

2
Means and Variances of the Derived Statistics s , s, m

Empirical Support for Hypothesized Distributions

LIST OF ILLUSTRATIONS

Title

Graphs of M* vs cr for selected values of A
r

Empirical test of normality of the distribution of I0

Empirical test of normality of the distribution of s

Empirical test of normality of the distribution of m

LIST OF TABLES

Title

Means and variances

Specificationsfor angular spacing and time spacing to assure

M -< 2 with 90% confidence

Estimation of unit normal parameters using finitemoments

with differentgrid spacings and displacements

Means, variances, and eovariances of I0, I1, 12

Sample values of r

Data on full samples for seIected runs and multipIes (n) of
grid spacing used to obtain A _ 2

Empirieal results with A _ 2 values of 10, s, m, M

Page

115

116

121

123

123

127

131

Page

120

139

140

141

Page

118

119

124

127

133

134

135

I
I

I
I

I
I

I
I
I

I

I
I
I

I
I

I
I
I

I



I
I

I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

APPENDIX A. STATISTICAL DESIGN OF AN OBSERVATIONAL NET FOR

THE MEASUREMENT OF DIFFUSION IN THE LOWER

ATMOSPHERE

1. Introduction

This analysis concerns the requisite spacing of observations in space

and time for the attainment of a given level of accuracy in the definition of the

field of concentration of an atmospheric pollutant. The analysis in space is

based on the hypothesis that the expected or population distribution of concen-

tration normal to the direction of travel is Gaussian. Field measurements

from continuous point source tracer releases of 30 minutes duration are used

to establish the variability characteristics within the population. For lack of

suitable sequences of instantaneous concentration measurements the analysis

in time is applied to the same data under the assumption that the localized

distributions in the direction of the wind are the same as those normal to the

wind and that the cloud moves uniformly with the speed of the wind. Although

the method of analysis is quite general, the numerical results derived from it

depend on the variability properties of these data. For this reason the results

should not be extrapolated to design problems involving appreciably different

sampling times or distances without due regard to the expected concentration

variabilities.

For analysis purposes in the present problem the observational net over

a horizontal cross section is assumed to be in the form of a polar array. By a

polar array is meant a plane configuration described by concentric circular

arcs, each of which is subdivided into a number of equal segments, although the

proportionate subdivisions are not necessarily the same for different arcs. The

equal central angles subtended by the equal segments of a given arc will be

termed the angular separation along that arc. Given that observation posts for

the measurement of atmospheric diffusion of contaminants are disposed in

polar array over a horizontal plane, and assuming Gaussian distributions of
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concentration, except for random deviations, there are three design problems

to which the present analysis is addressed:

(i) To derive approximate representations of the error distributions of

sample estimates of concentration parameters, as a function of separation be-

tween observations.

(2) To determine the maximum angular spacing that will assure, with

90% confidence, that the ratio of an actual to estimated concentration parameter

shall not exceed a stated upper tolerance limit.

(3) To determine the greatest time interval between measurements that

will assure, with 90% confidence, that the ratio of actual instantaneous peak

concentration to estimated instantaneous peak concentration shall not exceed a

statedupper tolerance limit.

2. Summary of Principal Results

Attention was centered on statisticsrelated to three parameters:

(1) Integrated Concentration: Ratio of Estimated Integral to Actual

Integral--Symbol I0

(2) Variance of Concentration: Ratio of Estimated Variance to Actual

Variance--Symbol s2 (Also s = _Z)

(3) Peak Concentration: Ratio of Actual Peak Concentration to

Estimated Peak Concentration--S__rmbol M (M = r0s/10) (Also m = log M)

(Notice that inthe firsttwo, the estimated value is in the numerator but in the

third,the estimated value is in the denominator.) The sampling mean and var-

iance were derived for the firsttwo statistics,the square-root of the second,

and the log ofthe third--also for certain other statistics. Approximate .distrib-

utions were obtained by regarding I0, s, and m (= log M) as normal variates.

Evidence is presented in Section 7 to support the hypotheses of normality. The

means and variances, recorded in Table 1, are expressed in terms of two basic

2
parameters, A and ar, where
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A = space between observations in units of the standard deviation of

the distribution of concentration

2
= variance of r where r is a random variable defined by

r
Actual concentration

r =
Gaussian concentration

The spacing of observational posts is dictated by the sampling accuracy

of the estimated peak concentration, for this has the greatest error variance.

of the upper 90% confidence limit of M = antilog m = r0s/I 0 as a func-Graphs

tion of a for selected values of A, are shown in Fig. 1. Based on empirical
r'

evidence from Dry Gulch, [1] it is estimated that a = 0.25. If an additional
r

measurement error having a standard deviation of 15% is superimposed on the

Dry Gulch estimate, the result will be a = 0.29. Fig. 1 displays values of ar r

from 0.25 to 0.50 (corresponding to four times the variance indicated by Dry

Gulch data). It is concluded from Fig. 1 that A = 2 would be an acceptable

spacing to assure M -< 2 with 90% confidence.

Specifications for angular spacing and time spacing between observations

at a given observation post have been determined so as to assure that M <- 2

with 90% confidence. Angular spacing requirements were based on values of

a considered appropriate for stable conditions. Time spacing requirements
Y

were arrived at by assuming that the localized distribution of concentration in

the x direction is the same as that in the y direction over relatively small

distances (scale comparable to a small multiple of av) and that the cloud moves

uniformly with speed u. The specifications listed in Table 2 are based on

u = 3 meters/sec, and values of a as indicated in the table.
Y
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TABLE 1
MEANSAND VARIANCES

I

I
I

Statistic Symbol Mean Variance

Integrated C oncentration:

E stim ated/Ac tual

Variance of Concentration:

Estimated/Actual

Standard Deviation of

C onc entration:

E stimated/Actual

Peak Concentration:

log (Actual/Estimated)

I 0

2
S

m = IogM

log(roS/I O)

3_2A
r

1 -
64_-

5___ _ 1/2,2
3 2,/'-if" r

d

2
ff A

r

2_

s_

32_

1+

27A 2

r

I
I

I
I
I

I
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TABLE 2

SPECIFICATIONS FOR ANGULAR SPACING AND TIME SPACING

TO ASSURE M -< 2 WITH 90% CONFIDENCE

(u = 3 meters/sec.)

x
(kilometers) (meters)

Angle

(degrees)

Time

(minutes)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

68

125

180

235

275

325

370

420

460

500

548

582

630

67O

710

7.8

7.2

6.9

6.7

6.3

6.2

6.1

6.0

5.9

5.7

5.7

5.6

5.6

5.5

5.4

0.76

1.39

2.00

2.61

3.06

3.61

4.11

4.67

5.11

5.56

6.09

6.47

7.00

7.44

7.96

l

i
!
l

I 119

!



Fig. 1.

M* = 90% Upper Confidence
Actual Peak

Limit of M =
Estd. Peak

//

//

.3 .4 .5

r

Graphs of M* vs a for selected values of A
r
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3. Formulation of Statistical Model

It is assumed that the underlying distribution of concentration along an arc

of the observational net is Gaussian, but that individual observations depart from

the Gaussian values by independent random factors. Thus, if the Gaussian con-

centration at observation post i is denoted by f. and the actual observation by
1

a., the corresponding random factor r. is defined so as to satisfy the equation,
1 1

a. = r.f. {r i - O) {1)1 11

Let Yi denote the signed distance (coordinate measured along the arc) of

observation post i from the axis of peak Gaussian concentration (at which loca-

tion y = 0) and let A denote the uniform distance, along the arc, between obser-

vation posts. For convenience, both Yi and _ are taken to be measured in units

of the true standard deviation. In effect, then, this expedient sets a = 1, and
Y

in ordinary usage A is to be interpreted as a multiple of the standard deviation,

as measured in meters•

The statistics under consideration are of two kinds, direct and indirect.

Regarded as direct statistics are the relative moments, designated as I 0, I 1,
2

I . The indirect statistics, s for example, are functions of the relative
2

moments.

The relative moments are defined as follows.

I0 =Eai A = _rfA• . ii
1 1

(2)

= _, y.a.A =_ {3)I1 . 1 1 . Yirifi A
1 1

12 = _. yi2ai A : E Yi 2rifi A . (4)
I i

2
The relative variance, s , is defined as a function of the relative moments

by the equation,
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2 2

s2 _ I012- (I011 _ I012-Ili02
(5)

The variate r 0, used to define M, has theoretical existence although it is

not actually accessible to observation. It is defined in the following manner. Let

a 0 denote the actual peak concentration (not necessarily located at y = 0, and not

necessarily included in the observations) and let f0 denote the peak Gaussian

concentration (which does occur at y = 0); then the formal definition of r 0 is

given by

The estimated

a 0 -- r0f 0

a 0 = Actual peak

f0 = Gaussian peak

Gaussian peak _0

I 0

f0- s f0

has the formal definition,

(6)

(7)

and so the quotient M of actual peak and estimated peak is given by

a 0 r0s
M - - (8)

fo Io

The statistical hypotheses are that the factors r. are independently and
1

identically distributed with unit mean and that I0, s and m = logM are distributed
2

normally. The immediate task is to derive the means and variances of I 0, s , s,
2

and m. {Here s is included for the sake of general interest, but it is s that is
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assumed to be normally distributed.) This will require also the determination

of the means and variances of 11 and 12 as well as the three covariances between

I 0, 11, and 12. Before undertaking this task, a numerical feature of the normal

curve will be cited.

4. A Numerical Feature of the Normal Curve

The two parameters of the normal curve, considered as an exact mathemat-

ical function, can be determined precisely from two exact points, and the three

parameters of a Gaussian distribution of concentration can be determined pre-

cisely from three exact points. However, in neither case would the method of

moments be used. Nevertheless, the purpose of this section is to bring out the

fact that the method of moments does yield good approximations, even with wide

spacing and few points, if the function is truly normal. The practical importance

of this fact is that it can be turned around to allow integrals to replace certain

finite sums, involved in the means, variances, and covariances of I0, I1 and 12.

Assuming an exact normal distribution, hence setting r. = 1, the quantities
2 1

I0 , I 1, 12 , s , s, and a0/_ 0 (equations 2-5, 8) were evaluated for the unit normal

curve under different values of A (A = 1.0, 1.5, 2.0) and with the "grid" system

(observation points) displaced by various amounts ("shifts" of 0.00, 0.25, 0.50, 0.75)

with reference to the true center of the curve. The main results of the calculations

are shown in Table 3. Although the number of points used varied from 7 with

A = 1 to 3 with/x = 2, the numerical accuracy remained high. In the case of the

estimated location of the center, given by I1/I0, a shift of the grid by a given

amount in the opposite direction would yield an estimate of equal magnitude but

opposite sign.

5. Means, Variances, and Covariances of the Relative Moments I0, I, 12

In general if Xl, x 2 ..... x are independent variates having a commonn
2

mean _ and a common variance a and if L 1 and L 2 are linear functions of

these variates, such as
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Shift

.25

TABLE 3

ESTIMATION OF UNIT NORMAL PARAMETERS USING FINITE MOMENTS

WITH DIFFERENT GRID SPACINGS AND DISPLACEMENTS

.5O

.75

Statistic

I o

11/I o

S

Actual peak
Estimated peak

Io

I1/I 0

S

___Actual peak

Estimated peak

Io

I1/I 0

S

Actual peak

Estimated peak

Io

I1/I 0

S

Actual peak

E stimated peak

7-ordinate

scheme

5= 1.0

.9997

0

.9977

.9980

.9995

.0009

.9970

.9975

.9991

.0032

..9947

.9956

5-ordinate

scheme

A= 1.5

].0000

0

.9965

.9965

1.0000

.0015

.9978

.9978

.9998

.0021

.9999

1.0001

3-ordinate

scheme

A= 2.0

1.0138

0

.9231

.9105

1.0094

.9979

.0071

.9990

.0022

.0337

.9426

.9338

.9982

.0513

.9883

.9901

.9900

.9921

.9995

1.0005

.9856

.0459

1.0297

1.0447
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L1 = blX l+b2x 2+ ... +b xn n

L 2 = ClX 1 +c2x 2+...+c xn n

(9)

then the means and variances and the covariance of the L's are given by the

formulas

(L1) = (b1 + + b n)Mean bt + b 2 .o.

Mean(L2) = _ (c] +c 2+... +c n)

Var (L1) = 2(bl 2+b22+... +bn2)

Vat (L2) a 2 2 2 2)= (c 1 +c 2 +...+c n

a2
Coy (L1, L 2) = (blC 1 + b2c 2 + ... + bnC n)

(lo)

These formulas, applied to I0, I1, 12 under the hypothesis that the r's are inde-

pendent and that

2
Mean. _(ri} = 1, Var_ _(ri) =ar all i (11)

lead to the following equations:

Mean (I0) = _, f'_l
i

Mean (I1) = _,, YifiA
i

Mean (I2) =_, Yi 2f'A1
i

(12a)

(12b)

(12c)

2

Var (I0)= (or A)_. f.2A
1

i

Vat (Ii)= (ar 2A) _'iyi fiA2 2

Var (I2) (ar2A) _, 4 2= Yi fi A
i

(13a)

(13b)

(13c)
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Coy (I 0, I 1) = (ar2A) _ Yifi2A (14a)
i

(ar2A) 2f 2ACoy (I0, 12) = _ Yi i (14b)
i

Coy (II, 12) = (ar2A) _, yi3fi2A (14c)
i

Now replace all sums by corresponding integrals. To this end, remembering that

the scale has been reduced to sigma units, write

2

1 _ n -y /2dy_, nYi fi A _ _ f y e
i _ao

= 0 if n is odd

= 1 if n=0,2

=3 if n=4

Further, for the terms involving f.2, first make the substitutions
1

and put

2 1
f.A-
1 24_

= y_'2", h = A_', d _ = (_f'2)dy

2 2
i i -_/21 e-yiA - e

2_ 2v_- 2_
h

whence

n 2A _ 1 1 Z 1 n e-_2/2 h
E Yifi i
i i

1 1 1 _ n -_2/2

2_-_- (_-_)n _ f__ _ e
d_

= 0 ifn is odd

1
- ifn = 0

2C_

1
- ifn = 2

4_-

3
- ifn = 4

84}-
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When (15) and (18) are applied to (12), (13) and (14), the results are those exhi-

bited in Table 4.

TABLE 4

MEANS, VARIANCES, AND COVARIANCES

OF I0, I1, 12

Statistic Mean Variance Pair Covariance

I

I
I

I o

I i

1
2

2A/4v_
r

IO, 11

I O, 12

! I, 12

0

2A/4_
r

0

i
I
I

I
I
i
I

I
i
I

2
6. Means and Variances of the Derived Statistics s _ s_ m

2
The first step toward determining the means and variances of s , s, and

m is to expand each in a Taylor series through terms of second degree. Define

variables eO, el, e2, e 3 as deviations Of Io, I1, I2, r 0 from their respective

means :

I0 = l+e 0

I = (
1 1

12 = 1+_ 2

r 0 = 1+_ 3

where E 3 is assumed to be independent of e 0' _ 1' and e 2"

(means) that will be needed shortly are stated here for future reference.

(19)

Expected values

E(c0) = E(¢I) = E(42) = E(43) = 0

2 A
r

E(420) - 2v_ ' E(<041) = 0

(20)
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2
A

r
E(c 0_2) - 4_/_

2
A

2 r
E(_I) - 4_-_ '

E (c I c3) = 0,

E (c 2 ¢3 ) = 0,

The functions to be expanded are

E (c o ¢3) = 0

E (¢1 <2 ) = 0

3a 2 A

22 rE (<) - 8_r_

2 2
E (¢3) = _r

(20)

2 I2 I12
s - - - (1+

I0 I02

s= s'_'=

-1 -2
E2) (1 + e0) - el2(1 + e0)

(21)

121 1/2/[(l+c0) (1+ e2) - E (1+ e 0) (22)

Ir0s )m = log- =
II0

1

2 log [(1 + E0)(1 + c2) - C 12] - 21og (I+c0) +log (I+¢3)

(23)

When these are expanded around c o = ¢1 = c2

through terms of the second degree (omission

coefficient) are

= E3 = 0, the three series

of any term indicating zero

2 2
s = 1 -c 0 + E_ + G 02 - £0 E

2
- E +

2 1 .(24)

1 1 3 2

s = 1- 2 ¢0 + -¢2+2 8 E0 -

1 1 2 1 2
_- .°°

(25)

128

I



g 3 __ 1 3 c02 1 12 1 22 1 c32m : - _eO 2_2 + c3 + 7 - _e - 7c - _ +... (26)

The mean values are found by taking the sum of the expected values term

by term, as given in (20). For s 2 the second-degTee contributions add to zero,

but this is not so for the other two. The means are

Mean(s 2) = 1 (27)

3a 2A
r

Mean(s) = 1 - 64_/-_ (28)

5A 1) 2Mean(m) = 32 _-_ - 2 ar (29)

The variances are found by taking the expected values of the squares of

the sums of the first-deg_-ee terms. Thus,

Var(s 2) = El(- e 0 + E2 )2] = E(e02)- 2E(e 0e 2) + E(e22) (30)

Or_

3o- 2A

Var(s 2) _ rs (31)

Similarly,

1 1 ¢ 2)2]Var(s) = E[(- _ _0 + -2 (32)

II

II
II

Again,

3a 2A
r

Var(s) - 32_-_

3 1 3)2]Var(m) = E[(-_ e 0 + -2 e2 + •

(33)

(34)
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Or,

1 27A ) 2 (35)Var(m) = + _ _r

The foregoing formulas are the ones sought, but as an excercise in

checking, the mean and variance of M are obtained. The expansion of M is

3 1 15 2 3
- + + e3 + -- e0 0M = 1 2 e0 2 C2 8 - _ E C2

3 1 2 1 2 1
- - - +  2E3 (36)

37_ 2A
r

Mean(M) = 1 + 64(_- (37)

1 27A ) 2Var(M) = + 32_ _r (38)

The curious result that the variance of M seems to be the same as the variance

of m calls for some further analysis. Although nothing in the derivations of

means and variances depends on it, the distribution of m has been assumed to

be normal. Now in general, if W is a nonnegative variable and w = logW is

normally distributed, with mean b and standard deviation e, then the mean and

variance of W are given by the equations

1 2
Mean(W) = exp(b +_c ) (39)

VarCW) = [exp(2b + c2)] [exp(c 2) - 1] (40)

On expanding the exponentials to one term, and substituting the mean of m for
2

b and the variance of m for c , the results are:
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I

Mean(W) =

2

+l_/,r 1)2 2 1( 27A 1 a 2 _37a1 ,32 _-- ar + -2 1 + 32_r] = 1 + rr 64_f_r

(41)

37a 2A

r 27A 2 (42)
Var(W) = [1 + 32_ ] [(1 + 32----_) a r ]

2
Accordingly, (37) agrees with (41), and to the first power of a (38) agreesr

with (42). This is as far as the formulas should be expected to agree, since the

Taylor expansions have been taken only through terms of second degree.

7. Empirical Support for Hypothesized Distributions

The hypothesized normality of designated statistics was based primarily

on general principles, and secondarily on empirical findings. On general princi-

ples, normality is assumed, because weighted averages of errors commonly tend

to distribute themselves in approximately normal frequencies. In choosing be-

tween alternative statistics, as to which one would be taken as normal, the de-

cision again was based on general principles. Thus s was chosen in preference
2 2

to s because its standard deviation is only half as large as that of s , and the

smaller standard deviation leaves more room to spread symmetrically about

the mean; or more generally, because the square-root of a nonnegative variate

is typically more nearly normal than the original. Similarly, m was taken to

be normal rather than M, because the logarithm of a nonnegative variate is

typically more nearly normal than the original.

The parameters of the distributions were derived by a straightforward

mathematical development from stated premises. They have been expressed in
2 2

terms of mathematical constants and one physical parameter a Only. ar r

has to be estimated from data, in order to complete the specification of all dis-

tributions employed.

131

!



The theoretical distributions were subjected to an empirical test by com-

puting a number of sample values of I 0, s, m using data from the Dry Gulch*J1]

experiments. All of these statistics were calculated from runs on Arc 7. This

arc had a radius of 0.53 miles (0.85 km) and angular separation of 2 _, which

corresponds to arc segments of 29.77 meters. The runs had been divided into

three classes on the basis of stability, but only Category 2 had enough runs to

furnish a broad range of values of (7 . Out of 44 runs in Category 2, eight were
Y

chosen for analysis. Four runs (Nos. 69, 18, 77, 56) showing the lowest values

of a (43.9, 50.4, 58.1, 62.1 meters respectively), two runs (Nos. 49, 59) showingY

values of a near the middle of the distribution (a = 102.9 meters for both runs),
Y Y

and two runs (Nos. 3, 87) showing the highest values of a (154.2, 165.4 meters
Y

respectively) were selected, so as to represent the range of experience in these

runs. Run No. 87, showing the highest value of ay, proved to be markedly bimodal.
2

This run was omitted in the estimation of a but was included in the tests of nor-
r

mality.

Using the full set of observations on each run, the usual concentration

parameters were computed, and then the values of r at each observation post

were estimated from the quotient of the observed concentration and the fitted

Gaussian concentration. The sample values of r used for the estimation of
2

were taken from those observation posts included between the limitsr

-2.15a -< y - y -< 2.15 a . There were 83 values in all; these are listed in
Y Y

ascending order in Table 5. The mean of r for these 83 values was 0.973 and

the standard deviation (defined as the square-root of the unbiased estimate of

variance) was 0.247.

For each of the eight runs an estimate of r 0 was made. To this end, the

actual peak concentration a 0 was estimated by parabolic interpolation, using

the observed maximum and one observation to either side. A parabola was fitted"

to these three points, and its calculated maximum was taken as a 0. The peak

concentration on the fitted normal curve (value at y = y ) was taken as f0' and

*Haugen, D. and J. Fuquay (Editors) 1963; The Ocean Breeze and Dry Gulch
Diffusion Programs. Vol 1, AFCRL-63-791(1)
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N = 83

Rank ] r

1 .270

2 .341

3 .494

4 .524

5 .542

6 .603

7 .644

8 .663

9 .676

10 .678

11 .709

12 .712

13 .739

14 .756

15 .786

16 .788

17 .8 24

18 .829

19 .831

20 .877

21 .879

22 .879

23 .885

24 .887

25 .891

26 .892

27 .900

28 .901

TABLE 5

SAMPLE VALUES OF r

Mean = .973 Standard Deviation = .247

Rank r

29 .914

30 .924

31 .925

32 .929

33 .932

34 .936

35 .940

36 .945

37 .951

38 .953

39 .954

40 .955

41 .958

42 .971

43 .980

44 .985

45 .992

46 .995

47 .996

48 1.002

49 1.002

50 1.005

51 1.008

52 1.024

53 1.038

54 1.039

55 1.042

56 1.062

Rank r

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

8O

81

82

83

1.071

1.073

1.078

1.080

1.092

1.094

1.096

1.099

1.101

1.115

1.122

1.124

1.136

1.135

1.151

1.177

1.221

1.250

1.277

1.289

1.313

1.322

1.354

1.383

1.414

1.600

1.824
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was estimated by the quotient: r 0 = a0/f 0. Also, for each run it was deter-r 0

mined what integral multiple of the regular grid spacing would be equivalent to

twice the measured standard deviation. A compilation of general data on the

eight runs is exhibited in Table 6. Listed in Table 6 are the standard deviation

CTfor the individual run, the total number N of recorded concentrations, the

multiple n of grid spacing needed to make A approximately 2, the actual value of

A, and the estimated r 0.
TABLE 6

DATA ON FULL SAMPLES FOR SELECTED

RUNS AND MULTIPLES (n) OF GRID SPACING

x = .53 miles

USED TO OBTAIN A _ 2

angular separation 2 °

Run no. o-

3 154.2

18 50.4

49 102.9

56 62.1

59 102.9

69 43.9

77 58.1

87* 165.4

I lni
36 10 1.93

15 4 2.36

22 7 2.04

14 4 1.92

22 7 2.O4

15 3 2.O3

17 4 2.05

30 ii 1.98

*Markedly bimodal.

d = 29.77 meters

r
0

1.028

1.074

1.210

1.034

O.974

1.041

1.240

1.185

The grid spacing designated by n in Table 6 was applied to each run,

using as many separate trials as possible without using any observation more nor

less than once. Thus every observation was included once and only once. The

number of trials on each run, the number of observations on each trial, and the

calculated values of I0, s, m 0 M are presented in Table 7. In all, there were

50 trials.
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X = .53 miles

Run Trial

3

18

18

TABLE 7

EMPIRICAL RESULTS WITH A _ 2

49

49

3 1

2

3

4

5

6

7

8

9

10

VALUES OF I0, s, m, M

DRY GULCH ARC 7 CATEGORY 2

Angular separation 2 °

No. of

obs.

4

3

3

3

3

4

4

4

4

4

I
0 s

.988 .973

1.101 1.022

1.054 1.030

1.014 .984

1.169 1.146

1.023 1.099

.925 .953

.942 .855

.850 .831

.934 .919

1

2

3

4

5

6

7

4

3

4

4

.95O

1.152

.991

.907

1.083

1.250

1.246

.956

.811

1.023

1.191

.705

.959

1.119

3

3

4

3

.825 1.327

.895 1.245

.797 .701

.904 .556

d = 29.77 meters

m M

.012 1.012

-.047 .954

.005 1.005

-.003 .997

.007 1.007

.099 1.104

.057 1.059

-.070 .932

.004 1.004

.011 1.011

.078 1.081

,280 .756

.103 1.109

.344 1.410

-.239 .787

-.075 .928

.083 1.086

.666 1.945

.52O 1.683

.061 1.063

-.296 .744

!
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Run

56

56

59

59

69

69

77

77

87*

Trial

1

2

3

4

5

6

7

1

2

3

1

2

3

4

1

2

3

4

TABLE 7 (continued)

No. of

obs.

3

3

4

4

4

3

3

3

3

3

3

5

5

5

5

4

4

4

3

3

3

3

I o

.9O3

1.088

.922

1.087

.866

.908

.910

.972

1.163

1.182

.999

.989

1.042

.969

.954

1.228

.873

.944

.738

1.492

1.524

1.645

S

.890

.993

1.101

.963

.948

.744

.818

.994

1.175

1.106

1.013

.907

.980

1.080

i. 188

.839

.855

1.081

1.004

1.050

1.028

1.002

m

• .021

-.056

.214

-.086

.064

-.227

-.133

-.004

-.016

-.093

-.013

-.046

-.021

•148

.435

-.166

.193

.350

.478

-.182

-.224

-.326

M

1.021

.946

1.238

.918

1.066

.797

.875

.996

.984

.911

.987

.955

.979

1.159

5

6

7

8

9

3

3

2

2

2

1.242

1.015

.879

.867

.637

*Markedly bimodal.

.995

.991

.835

.761

.8 27

-.052

•146

.118

.039

.432

1.544

.847

1.213

1.420

1.612

.834

.799

.722

.950

1.157

1.125

1.040

1.540
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TABLE 7 (continued)

I

I
I

I
I

I
I

I
I

I
I

I
I

i
I

I
I

Run

87*

Trial

10

11

No. of

obs. I 0

.652

.309

.758

1.187

m

.320

1.517

*Markedly bimodal.

137

M

1.378

4.561



Using A = 2, a = .25 in the formulas for the means andvariances, ther
following calculated values of means and standard deviations were obtained.

Mean I0 = 1.000 Std. Dev. I 0 -- 0.188
Mean s = 0.997 Std. Dev. s = 0.081

Mean m = -0.020 Std. Dev. m = 0.349

It would have been perfectly feasible to plot the 50 empirical values of each

statistic on normal probability paper, to check the distributions. An alternative

method, actually used, is to compute the normal value that should correspond to

any given rank, and then plot the empirical value at a given rank against the

theoretical value at the same rank. Plots for I 0, s, and m are displayed,

respectively, in Figs. 2, 3, and 4. Remembering that some of the statistics have

been computed for a distinctly bimodal distribution, the general correspondence

between actual and theoretical seems passably good.
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1.0 -
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.2
.6

Fig. 2.

o•."

0 •

oeeo oo

o• °

I I I
.8 1.0 1.2

Theoretical I 0

1.4

Empirical test of normality of the distribution of I 0

139



.8

Fig. 3.

.9 1.0 1.1 1.2

Theoretical s

Empirical test of normality of the distribution of s
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APPENDIX B

IBM 1620 Fortran Program for Layered Diffusion Models

The mathematical model is described in the text. The program solves

the diffusion equation for each point on a polar coordinate grid for a maximum

of 16 radii and each angle in one quadrant. Values of ground concentration from

each level are available as auxiliary print out while the final print is the total

sum for the surface from all layers. A different centerline direction may be

given for each layer and is properly accounted for by the program so long as

the total difference between layers does not exceed 90 degrees of arc.

Control cards required; all except first are right adjusted.

1. Title card col 1-72 may contain any identifying remarks.

Format 814

col 1-4

col 5"8

.

.

LM - number of layers to be calculated, max is 6

NN - number of degrees either side of centerline for

which values are to be computed, max is 45.

col 9-12 MDIR - average centerline direction for all layers.

col 13-16 MM - control that permits starting calculations at

the source, MM = 0 or any given distance away

from the source, e.g., if close in concentration

are very low and the maximum is expected at

about 10 km one can compute from 5-20 km by

setting MM := 5.

Format 814 Wind directions in layers

col 1-4 Wind direction in degrees in layer 1

col 5-8 Wind direction in degrees in layer 2

col 21-24 Wind direction in degrees for layer 6
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4. Format

5. Format

6. Format

7. Format

8. Format

8F9.0

col 1-9

col 10-18

col 19-27

col 46-54

Initial source horizontal cr cards

crI for layer 1 (see text)

a2 for layer 2

a3 for layer 3

a6 for layer 6

8F9.0

col 1-9

col 10-18

col 46-54

NOTE:

Initial source vertical cr cards

cr1 for layer 1

(_2 for layer 2

a6 for layer 6

If Gaussian form for each layer is assumed, these

will be calculated values like the horizontal cr. If

these slices are to be used with integration for

final concentration as done in this report a i = 1.0

for all layers.

8 F 9.0 Height of each layer

col 1-9 Height of layer 1 (meters)

col 10-18 Height of layer 2

col 46-54 Height of layer 6

8 F 9.0 Wind speed in each layer

col 1-9

col 10-18

col 46-54

8F9.0

Wind speed in layer 1 (m/s)

Wind speed in layer 2

Wind speed in layer 6

Deposition factor

col 1-9

col 10-18

col 46-54

Deposition factor for layer 1

Deposition factor for layer 2

Deposition factor for layer 6
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11.

12.

13.

14.

Format 8 F 9.0 ay acard

ay and a z are given in the form of a power law ay

Card No. 9 contains a coefficient for ay.

col 1-9

col 10-18

col 46-54

8F9.0 ay

col 1-9

a coefficient for ay

a coefficient for ay

col 10-18

Format

col 46-54

8F9.0 az

col 1-9

col 10-18

Format

for layer 1

for layer 2

a coefficient for ay for layer 6

b card

b coefficient for ay for layer 1

b coefficient for ay

b coefficient for ay

a card

for layer 2

for layer 6

a coefficient for a z for layer 1

a coefficient for a z for layer 2

Format

Format

Format

= ax b.

col 46-54

8 F9.0 azbcard

col 1-9 b coefficient for a z

col 46-54 b coefficient for az

a coefficient for a z for layer 6

for layer 1

for layer 6

6 E 10.0 Q card - source strength for each layer in floating

exponent format, may be percent of total if calculating X/Q

col 1-10 Q for layer 1

col 11-20 Q for layer 2

col 51-60 Q for layer 6

2 F 9.0 Radii and layer thickness control

col 1-9 Radii control, if one km spacing is required

this number is 1o, if one meter spacing is required
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this number is .01, if two km spacing is required

this number is 2., etc.

col 10-18 Thickness control, for vertical Gaussian distributions

this number is 2., for integrated model this is the

layer thickness.

15. Format I 4 Blank card is last case, 1 punch is col 4 indicates another

case to follow and computer will proceed.

Output is punched cards.

Sense switch 3 controls intermediate output. If surface concentration

contributions from each layer are desired, Switch 3 should be on, if only the

total surface concentration from all layers are required, it should be off. In

the on position, it increases running time up to 2 minutes per layer.

Running time is approximately 5 minutes per layer plus 12 minutes for

input/output and initialization procedures.

There are two pause instructions, the first is after completion of peak

concentration calculations so punched output can be removed from hopper.

Press start and average concentration values will be punched. If card 15 is

blank, the second pause is executed, and the program ended or more input cards

may be read into the machine, and the program restarts when the start button

is pushed.

A4OK memory is required for this program with card input/output.

Progress reports are printed on the console typewriter each time a layer

calculation is begun.
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C

C

3OO

3(;I

302

3O3

........ 31r,

35c,

351

352

360

lOG

INfCTANTANEOUS POINT _OtJhCE-dAY_PED-DiFFUSION PROGRAM

PERMITS INPUT OF 6 LAYERS OF Y.OURCF AND DIFFUSION PARAMETERS

DIMENSION 51GZ(6qI6),SIGI (6}oSIGfi(6),E(6}qF(6),G(6),H(6I,R( 16}

DIMENSION A(6, 16)eD(6tI6),C(6, 16), XII614XDQ(91tI6)tXYLI6},O(6)

DIMENSION_XZL/6ZI,_y(._L_6_.L,_XZ _).,SZ2(6__I..fZLtt3_Y..Z__qL.SJ_G_Y._(6-16}

COKMON SIGY,SIGZoSIGYP*SZ2,SYZ,XDQ,AqCeD,X,R

FORMAT (36A2)

FORMAT (BI4)

FORMAT (8F9,0)

FORMAT (6EIr_ew)

FORMAT ( 6E ! O,3&6EI_O___. ,=tZ#_E]_,.__

EORMAT (36A2//BM AZIMUTH. lC×qSH X ATq2ytF4oO,36H

IFRO_ RELEASE POINT/8H DEG LYRo IOX?H]ST R =, I4}

FORMAT (214,6E]O,3/(BX,6EIQ,3/BX.6_lO,3)/}

F_RMAT (_SX,_2H AVERAGE CONCENTRATION)

FO_AT ( I]HBEGIN LAYER,I_)

READ 300,(TITLE(I}, I=] ,36)

KM INCREMENTS

READ 301,LM,NN,MDIR,MM

READ 30I,(NTHETA(I ), I=I,LM}

302,(SIGI (I}, I=I,LM)READ

I

I

I
I
I

I

I
I

I
I
|

I

READ

READ

READ
_o _

READ

READ

READ

READ

READ

- REA. D

302,(SIG2(I), I=|,LM)

302,(HT(I ), I=],LM)

302,(UBAR(_),I=I,LM)

302,(VD(I},I=I,LM)

302,(E(I},I=I,LM)

30_,(F(I},I=I,LM)

302,IG(I),I:I,LM)

302,(H{I)II=I,LM}

303,(QII),|=|,_M)

READ 302,FM,DZ

PUNCH 350,(TITLE(1),I=I,36),FM,MM

DO IIO" I=I_91

DO II0 J=l,16

X(J)=O,

DO 120 J=1,6

XYL(J)=O,

__XZL_J___O__

XY(J)=O-

I_0 XZ(J)=O.

AMFJ_M

DO 130 J=I,L,M

XYL(J)=(LOGF(SIGI(J})-LOGF(E(J) ) )/F(J)

XZL_LJJ--__..(..L,.QGF(SIA2IJ) }--LOGF(&(J) _ )/H(J}

XY(J}= EXPF(XYL(J))+(AM_(IOOO,_FM))

XI(J}= EX_F(XZL(JI}+(AMI(IOOO,_FM}}

_O_._L3_O I=I.16

SIGY(J,I)=(XY(J)IIF(J)}_E(J)

SIGZ(J,I}=(XZ(J}_IH(J)}IG(J}

X_Y_f_J__Y(J}+(IhOO,_FM}

XZ(J)=XZ(J}+(IOOO_IFM)

130 CONTINUE

_OJ 90J-- L,_M

DO 190 l=l,lO

SZ2(J,I)= SIGZIJil)_ SIGZ(J,I)

SY_Z_(_J.I}= glATIJ_IIt _IGYI_I.I!

AI=I+MM

R(1)=((AI--I,)i{IOOO,IFM))+I,
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.........190 __ c (_a, I_)__._92q Ls.z.3/J_SZGY__( J • I } *s I GyR ( a, I ) I

200 DO 210 J=I,LM

AA=VDIJ)/UBA_IJ)

BB:HT(J)*HT(J)/2.

D0=7,874

DO 210 I=i,16

A(J,I ):AA*R(1)+UB/SZ2(J, I)

210 D(J,I ):OD*SYZ(J,I )*SIGY(J,I)

DO 275 I:I,LM

PRINT 360,I

L=NTHETAI(-I)-MDIR+46

DO 250 K=I,16

XIK)=QII)*IEXPF(-AI I,K)))/DII,K)

250 XDQ(L,K)=XDQ(L,K)+X(K)

IF(SENSE SWITCH 3) 251,252

251 PUNCH 351,NTHETA(1),I,(X(K),K=l,16)

I

I

I
I

I
I

252 DO 275 J=I,NN

CC:J*J

__-- ......... DO...255_K_}..'Z6.

255 X(K)=Q(I )*(EXPF(-A(I,K)-C(I,K)*CC) )/D(I,K)

LL=NTHETA( I )-J

I F _( t4D.I R__45:LL )_2_0_' [_Et2_5

260 L=LL-MDIR+46

DO 263 K=I,16

____263 xoa (L" K#._= X.( K )_XDQ_L,.I_.

IF (SENSE SWITCH 3) 264,265

264 PUNCH 351,LL,I, (X(K),K=I,16)

265 LL=NTHETA(1)+J

IF(MDIR+45-LL) 275,270,270 .

270 L=LL-MDI_+46

........... DO 273 K.E.I_,_16

273 xDO(L,K)=X(K)+XDO(L,K)

275 CONTINUE

........... LL=MDIR:46

N=O

DO 284 I=1,91

L:LL+I

D0 283 J=l,16

283 XDQ(I,J)=DZ/2,*XDQ(I,J)

PuNCH_35o!tL, N, [XOQLL,_ ) ,K= | f I _ )

DO 284 K=I,16

284 XDQ(I,K)=XDQ(I,K)/2,39

..... 400____ PAUSE .......

PUNCH 352

PUNCH 350,(TITLE(1),I=I,36)IFM,MM

................ DO 285___I=1,.91

L=LL+I

285 PUNCH 351,L,N, (XOO(I ,K),K=I,]6)

........... READ 301..,NXICSE

IF (NXTCSE) 100,500,100

500 PAUSE

___GO__TO lOq

END
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